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Abstract
A handover strategy is proposed that aims at natural and fluent robot to human object handovers. For the approaching phase,
a globally asymptotically stable dynamical system (DS) is utilized, trained from human demonstrations and exploiting the
existence of mirroring in the human wrist motion. The DS operates in the robot task space thus achieving independence with
respect to the robot platform, encapsulating the position and orientation of the human wrist within a single DS. It is proven that
the motion generated by such a DS, having as target the current wrist pose of the receiver’s hand, is bounded and converges
to the previously unknown handover location. Haptic cues based on load estimates at the robot giver ensure full object load
transfer before grip release. The proposed strategy is validated with simulations and experiments in real settings.

Keywords Programming by Demonstration · Gaussian Mixture Model · Physical human-robot interaction · Haptic
communication

1 Introduction

The recent technological advancements in robotics are
harbinger of the great influence that robots will have on
human activities in the near future. Nowadays, the idea of
having robots as assistants in domestic environments, partic-
ularly to aid people with handicaps and cognitive impair-
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ments, becomes increasingly popular. In this context of
human-robot interaction, handovers occur quite frequently,
therefore the necessity arises for seamless, reliable and nat-
ural handover control strategies (Bischoff and Guhl 2010).

The handover process is comprised of two main phases,
the approaching phase, where both the giver and receiver
extend their hands to reach each other, and the haptic interac-
tion phase, where the joint grasp and the object load transfer
take place. The approaching phase aims atmoving the robotic
arm in a natural and seamless way that is in accordance with
human preferences (Waldhart et al. 2015; Prada et al. 2013;
Huber et al. 2008; Cakmak et al. 2011; Strabala et al. 2013).
Studies on the object load transfer analyze the haptic interac-
tion which involves the relationship between the grip forces
appliedon theobject and the load force aswell as the temporal
coordination between the participants (Mason and MacKen-
zie 2005; Chan et al. 2012, 2013; Kim et al. 2002).

For the approaching phase, dynamical systems have been
proposed as an effective means to encode the human wrist
motion. Two of the most prevalent approaches making use
of dynamical systems for learning non-linear dynamics of
discrete motions, like human motion, are the Dynamical
Systems with Gaussian Mixture Models (DS with GMM)
(Gribovskaya et al. 2011; Khansari-Zadeh and Billard 2010;
Hersch et al. 2008) and the Dynamic Movement Primitives
(DMP) (Ijspeert et al. 2002; Prada et al. 2014; Prada and
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Remazeilles 2012; Prada et al. 2013; Pastor et al. 2009).As
opposed to DS with GMM, DMPs may be trained even
from one sample trajectory, i.e., the dynamical system learns
essentially a specific trajectory and then uses a phase vari-
able, which operates as an implicit clock, to shape its motion
between a start and end pose according to the learned trajec-
tory. Consequently DMPs exhibit a stereotypical behavior
from all start points. However, DMP ’s trajectory-based rep-
resentation can adapt to a newly demonstrated trajectory
(Wang et al. 2016) even allowing optimization during exe-
cution with novel reinforcement learning algorithms (Pastor
et al. 2012). Reinforcement learning has also been proposed
in Kupcsik et al. (2015) combining absolute and preference
feedback in a Bayesian framework to learn the reward func-
tion. On the other hand, DS with GMM follow a state space
based learning of nonlinear dynamic systems and are not
based on a phase variable like DMPs. As an advantage, a
state space based representation can learn much more com-
plex attractor landscapes; starting from different start points
quite different behaviors canbe created towards the samegoal
state (Pastor et al. 2012).As a disadvantage ofDSwithGMM,
much more data is needed for learning, particularly in high
dimensions (Pastor et al. 2012). In contrast to previous DS
based approaches, we reduce the amount of data needed for
training, by showing and exploiting the existence of mirror-
ing in humanmotion via appropriatemirroring actions during
execution. Thus, the amount of demonstrations required is
reduced by 50% as they are confined to half of the space.

Dynamical Systems with Gaussian Mixture Models
(GMM)havebeen successfully applied in robotics (Khansari-
Zadeh and Billard 2010; Hersch et al. 2008; Gribovskaya
et al. 2011; Kupcsik et al. 2010; Gribovskaya and Bil-
lard 2009; Shukla and Billard 2012).The DS proposed in
Khansari-Zadeh and Billard (2010) is used for learning arbi-
trary discrete motions from a set of demonstrations, while
ensuring global asymptotic stability at the target. However,
the DS is applied by modeling only the Cartesian position
of the robot end-effector or the robot joints, thus for differ-
ent robotic platforms the correspondence problem has to be
addressed. In Gribovskaya and Billard (2009) the position
and orientation of the human wrist are encoded in two dis-
joint DS that fail to capture the correlation between them. A
work that probabilistically encodes a pose inDS is Lang et al.
(2015); however, the existing correlations between the task-
spaceDOFs are lost in themapping owing to the construction
of the Gaussian Processes employed. Moreover, system sta-
bility is not examined. DMPs have also been used in Pastor
et al. (2009) and (Pastor et al. 2011) for learning and gener-
ating desired end-effector poses as well as in Silverio et al.
(2015) for the bimanual case utilizing the formulation of
Ude et al. (2014). However, the defined DMPs are associ-
ated implicitly only through the common canonical system.
As opposed to previous works with DS, we propose a sin-

gle DS for encoding pose dynamics, which also satisfies the
necessary conditions to ensure global asymptotic stability at
the target.

Another important aspect during the approaching phase
is that, in general, both the giver and the receiver move.
Hence, there is a time interval where their motions over-
lap temporarily. So far, this was not handled explicitly in
the training process of a dynamical system. In fact, training
of the DS is performed by feeding the DS with the giver’s
trajectory data with respect to the final exchange site that is
revealed after the completion of the task. As, during execu-
tion, the final exchange site is unknown, the current pose
of the receiver’s hand is often given as the target of the
DS, giving rise to deviations from the human trajectories,
exhibiting even small oscillations in some cases (Prada and
Remazeilles 2012; Widmann 2016). Consequently, methods
are pursued to either find an estimate of the exchange site
(Sisbot et al. 2010; Medina et al. 2016; Widmann 2016; Ben
Amor et al. 2014), ormitigate this oscillation effects by intro-
ducing a velocity feedback term in the dynamical system
(Prada and Remazeilles 2012). In Medina et al. (2016), the
final exchange site is estimated by a linear dynamical system
using least squares approximation and in Widmann (2016)
a DMP is used to model the receiver’s motion and predict
the handover location. In Ben Amor et al. (2014) a single
DMP is utilized to encode motions of both the giver and the
receiver in joint space and a probabilistic distribution of the
DMPparameters is used to allowpredictions of the task space
goal by observing partial trajectories of the human partner.
However, the uncertainty associated with this prediction sig-
nificantly shrinks after observing 60% of the movement. In
contrast to previous works we propose training the DS with
stationary targets; i.e. the receiver’s hand is fixed in human
demonstrations and only the giver moves towards him from
a range of relative initial poses. This training method gen-
eralizes well for moving targets and hence does not require
predictions of the final exchange site.

Another key feature of handover is the energy exchanged
during the object load transfer. Human studies have shown
that during the object transfer, the grip and load forces
decreased for the giver and increased for the receiver while
the duration of the load transfer stays below 500ms (Mason
and MacKenzie 2005; Kim et al. 2002; Huber et al. 2008).
Therefore, appropriate timing and synchronization between
the giver and receiver is required for safe object trans-
fer. Controllers that take into account the recommendations
from these studies have been proposed for a human-like
haptic interaction (Chan et al. 2013; Psomopoulou and Doul-
geri 2014). A human-inspired object load transfer strategy
targeted at robot assistance to elderly is introduced in Pso-
mopoulou and Doulgeri (2015). In this strategy, the giver
is a stably grasping robotic hand under a control law that
achieves dynamically a stable grasp equilibrium state via
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fingertip rolling as well as accurate estimates of the object’s
weight (Arimoto 2008). It is shown that the object remains
stable when jointly grasped by both hands and that the giver
follows closely the receiver’s lead via on-line estimates of the
object’s load. Thus, the giver opens its grip only when the
object is safely transferred to the receiver. To the best of our
knowledge, there are few works in the literature that tackle
the entire handover process, that is both the approaching and
object load transfer phase. In Shukla and Billard (2012) a
coupledDSwithGMMbased controller is introduced, where
two dynamical systems driving the hand and finger motions
are coupled. In this work, the proposed DS is integrated with
an object load transfer that adopts the basic concept intro-
duced in Psomopoulou and Doulgeri (2015) and hence it is
designed to succeed even in the case of unreliable receivers.

In summary, themainnovelties introducedbyour approach
with respect to the state-of-the art are:

– the proposed globally asymptotically stable DS with
GMM that encodes the human wrist position and ori-
entation in a single DS,

– the existence of mirroring with respect to the target plane
is showed and exploited thus significantly reducing the
amount of data needed for training,

– demonstrations are performed by fixing the receiver’s
hand as these data are shown to generalize well for a
moving receiver’s hand (target); hence there is no need
to predict the final handover site and

– the integration of theDSmotion generationwith anobject
load transfer strategy ensures that the receiver has stably
grasped the object before releasing it.

The approach is validated by both simulations and experi-
ments in various cases.

The rest of the paper is organized as follows. Section 2
introduces the proposed stable DS encoding the human wrist
motion and provides proofs of its global asymptotic stabil-
ity in cases of a fixed as well as a moving target generated
by another DS. Section 3 analyzes the mirroring existing in
human wrist motions with respect to the target plane and the
way it may be exploited during execution. Sections 4 and 5
describe the DS training and evaluation and the object load
transfer strategy respectively. Sections 6 and 7 provide simu-
lation and experimental results that demonstrate and evaluate
the proposed approach in various cases. Unit quaternion pre-
liminaries can be found in the Appendix.

2 The proposed stable DS encoding human
wrist motion

2.1 Mathematical formulation

A Dynamical System with Gaussian Mixture Models is
proposed to encode the human wrist motion during object

handovers by associating the position and orientation error
of the wrist with respect to the target with the translational
and angular velocity of the wrist:

V = f (ξ) (1)

where

V =
[
vT ωT

]
(2)

with v ∈ �3 being the translational velocity and ω ∈ �3 the
angular velocity, and ξ is a state variable given by:

ξ =
[
p̃ eTo

]
(3)

where p̃ = (p − pd) is the position error, p, pd ∈ �3 is the
current and desired position and eo = Δε is the orientation
error defined via (31) given the current and desired orienta-
tion R, Rd ∈ SO(3) respectively. Preliminary knowledge on
quaternions is summarized in the “Appendix”.

Remark 1 Notice that Euler angles or the angle-axis param-
eterization could have been considered as alternatives for
orientation representation as done in Khansari Zadeh and
Billard (2009); Gribovskaya and Billard (2009) respectively.
Nonetheless, these parameterizations introduce additional
singularities and mapping multiplicities generating abrupt
motions, thus affecting the training and accuracy of the
final model, especially in case of large rotations. A possi-
ble recourse would be the use of unit quaternions. Still, unit
quaternions have to satisfy constraints (23) and (24), which
are usually imposed on the output of the dynamical system
at a post-processing step (Pastor et al. 2009). To avoid such
modifications on the output of the DS one could leverage the
potential of GMM to associate different inputs with different
outputs, provided there is an implicit relation between them,
and impose these constraints by construction. In our case,
we set the input of the DS as the position and orientation
error, expressed via quaternions, which are calculated by the
forward kinematics, consequently (23) holds. For the out-
put we choose the linear and rotational velocity of the wrist
which is related to the quaternion derivative via (29) and thus
guarantees the satisfaction of constraint (24).

The dynamical system consists of K Gaussian functions
whose parameters are learned using the set of demonstrations
{ξ t,n, V t,n}Tn ,Nt=0,n=1, in order to find f̂ , the approximation of

f . We also require that f̂ is a stable estimate of f in �6,
whichmeans that: (1) it has a single attractor ξ∗ : f̂ (ξ∗) = 0
and (2) any trajectory {ξ t , V t }Tt=0 generated by f̂ converges
asymptotically to ξ∗ : lim

t→∞ ξ (t) = ξ∗ = 0, ∀ξ ∈ �6.
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For eachGaussian functionwe define the parameters θk =
{πk, μk,Σk}, where πk is the prior and

μk =
(

μk
ξ

μk
V

)
and Σk =

(
Σk

ξ Σk
ξV

Σk
V ξ Σk

V

)

are the mean and covariance matrix of the kth Gaussian func-
tion. Collecting these parameters in θθθ = {θ1 . . . θK }, the
dynamical system is given by:

V = f̂ (ξ ; θ) =
K∑

k=1

hk (ξ)
(
Akξ + bk

)
(4)

where Ak = Σk
V ξ

(
Σk

ξ

)−1
, bk = μk

V − Akμk
ξ , h

k (ξ) =
πk P

(
ξ ;μk

ξ ,Σk
ξ

)

∑K
i=1 π i P

(
ξ ;μi

ξ ,Σ i
ξ

) and P
(
ξ ;μi

ξ ,Σ
i
ξ

)
is given by the Gaus-

sian probability function. Notice that the nonlinearweighting
term hk (ξ) gives a measure of the relative influence of each
Gaussian locally and takes values in the range (0, 1].

Theorem 1 Assuming a fixed target, pd , Qd, the dynamical
system (4), with input ξ and output V given by (3) and (2)
respectively, is globally asymptotically stable if∀k = 1 . . . K
the following two conditions are satisfied:

bk = −Akξ∗ = 0 (5)

Ak +
(
Ak

)T
< 0 (6)

Proof We propose the following candidate Lyapunov func-
tion W :

W = 1

2
p̃T p̃ + (Q − Qd)

T (Q − Qd) (7)

W is positive definite with respect to p and Q which
implies positive definiteness with respect to eo. In fact,
the potential term (Q − Qd)

T (Q − Qd) can be written as
(Q − Qd)

T (
QQT

)
(Q − Qd) + eTo eo where QQT is pos-

itive semi-definite since it is a projection matrix. The proof
employs (33) and the equation I4 = JQ J TQ + QQT where
I4 is the identity matrix of dimension 4. The latter can be
proved by direct mathematical manipulation utilizing (23)
and the fact that ε̂ε̂ = εεT − ε2 I3 where ε̂ denotes the skew
symmetric matrix of vector ε (Murray and Sastry 1994).

Taking the time derivative along the solutions of (4) and
utilizing (29) yields:

Ẇ = (p − pd)
T ṗ + (Q − Qd)

T JQω.

Taking into account (33), Ẇ becomes

Ẇ = [
p̃T eTo

] [
v

ω

]

which can be written as

Ẇ = ξ T f̂ (ξ).

Substituting f̂ (ξ) from (4) and taking into account that
hk(ξ) ∈ (0, 1] ∀k = 1 . . . K as well as (5), (6):

Ẇ =
K∑

k=1

hk(ξ)ξ T
(
Ak + (Ak)T

2

)
ξ < 0

The negative definiteness of Ẇ implies the global asymptotic
stability of the system (4). �	

Theorem 2 Two dynamical systems V1 = f̂ (ξ1) and V2 =
f̂ (ξ2) given by (4), (3) and (2), with moving targets pd1 =
p2, Qd1 = Q2 and pd2 = p1, Qd2 = Q1 respectively, are
globally asymptotically stable in the origin, i.e. ξ1 = −ξ2 =
0, if ∀k = 1 . . . K and for i = 1, 2 the following conditions
are satisfied:

bki = −Ak
i ξ

∗ = 0 (8)

Ak
i +

(
Ak
i

)T
< 0 (9)

Theorem 2 states that the motion created by each DS, hav-
ing as target the current pose of the other, will be bounded and
converge to the same, previously unknown location, where
the object handover will take place.

Proof We propose the following candidate Lyapunov func-
tion W :

W = 1

4
p̃1

T p̃1 + 1

2
(Q1 − Q2)

T (Q1 − Q2)

+ 1

4
p̃2

T p̃2 + 1

2
(Q2 − Q1)

T (Q2 − Q1)

(10)

W is positive definite with respect to p1, Q1 and p2, Q2 and
by similar argument as in the proof of Theorem 1 we can
show positive definiteness with respect to eo1 and eo2.

Taking the time derivative of (10) we get:

Ẇ = p̃1
T ṗ1+ p̃2

T ṗ2+2(Q1−Q2)
T Q̇1+2(Q2−Q1)

T Q̇2

Utilizing (29) yields:

Ẇ = p̃1
T ṗ1+(Q1−Q2)

T JQ1ω1+ p̃2
T ṗ2+(Q2−Q1)

T JQ2ω2

Taking into account (33), Ẇ becomes

Ẇ = [
p̃1

T eTo1
] [

v1
ω1

]
+ [

p̃2
T eTo2

] [
v2
ω2

]
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which can be written as

Ẇ = ξ T1 f̂1(ξ1) + ξ T2 f̂2(ξ2)

resulting in:

Ẇ =
2∑

i=1

K∑
k=1

hk(ξi )ξ
T
i

(
Ak
i + (Ak

i )
T

2

)
ξi < 0

The negative definiteness of Ẇ implies that themotion gener-
ated by the twoDSwill be globally stable and will eventually
converge to the same pose. �	

2.2 Learning algorithm

To train the DS we use the Stable Estimator of Dynamical
Systems (SEDS) learning method, presented in Khansari-
Zadeh and Billard (2010), which can be directly extended to
our proposed DS. Concretely, we learn the DS parameters by
optimizing the following objective function:

min
θ

J (θ) = 1

2T

N∑
n=1

Tn∑
t=0

‖V̂ t,n − V t,n‖2 (11)

subject to the constraints bk = −Akξ∗, Ak + (
Ak

)T
< 0,

Σk
ξ > 0, 0 < πk ≤ 1 and

∑K
k=1 πk , ∀k ∈ 1 . . . K where

T = ∑N
n=1 Tn is the total number of training points. The first

two constraints are imposed to ensure the global stability
of the model, while the last three stem from the nature of
Gaussian Mixture Model. The optimization was performed
using MATLAB’s “fmincon” function.

3 Mirroring in humanwrist motion during
handovers

Learning human like reaching motions, encoding both posi-
tion and orientation, requires collecting data in 6D space. As
the amount of data and demonstrations increase, so does the
computational cost during training and execution. In this sec-
tion, the hypothesis of mirroring in human handovers about
an appropriately defined plane related to the target is made
and validated, i.e., reflections of demonstrated trajectories
recorded on half the space do not differ significantly from
demonstrations recorded on the other side of the plane. As
a consequence, demonstrations can be confined only in half
space, hence the amount of data needed for training is halved
speeding up the process of data collection and optimization.
Moreover, half the number of Gaussians are needed to cover
the trained space yielding a DSwith reduced complexity, i.e.,

Fig. 1 Hand frame convention

Fig. 2 Mirroring with respect to the target yz plane

less parameters, which leads to faster regression. During exe-
cution, appropriate mirroring actions are utilized each time
the giver’s initial pose is associated with the side for which
training was not performed.

Figure 1 displays both left and right hands with the hand
frame convention adopted in this work; z − axis is perpen-
dicular to the palm, with direction from the outer to the inner
side of the palm, y − axis is perpendicular to the outer palm
side denoted by the gray dashed line and finally x − axis is
chosen so that the coordinate system is right-handed. Notice
that, whether the hand is left or right, the hand’s orientation
is the same. Thus, a recorded path in SE(3) could come from
either a right or a left hand.Given this convention for the hand
orientation, we investigate the existence of mirroring about
the yz target plane, shown in Fig. 2, by applying the reflection
rules holding for the polar vectors and pseudovectors which
are detailed in the following subsection. The giver’s target
frame is derived from the receiver’s hand frame rotated by
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180◦ around its y-axis, with a constant offset with respect
to the receiver’s hand frame biased towards the free object
volume excluding the grasped part. Learning this offset is
considered beyond the scope of this work.

3.1 Preliminaries on reflections for vectors and
pseudovectors

Vectors or polar vectors have a specific transformational rela-
tion with the underlying basis of the space they are part of,
whereas pseudovectors or axial vectors donot share this prop-
erty. Polar vectors represent translational transformations
whereas pseudovectors represent rotational transformations.
In that sense a pseudovector’s direction denotes the direc-
tion of rotation i.e. right-handed-ness versus left-handedness.
Since a rotation co-relates the basis components of the space
in a specific way unlike a translation (or scaling), pseudo-
vectors change under a transformation in such a way as to
maintain or compensate the representation they have i.e the
direction (and magnitude) of rotation.

For some polar vector r ∈ �3, the reflection about the
subspace of all vectors orthogonal to n ∈ �3 is performed as
follows:

rm = H(n)r (12)

where H(n) is the Householder matrix and the subscript m
is utilized to denote the respective reflected vectors. For a
unitary n, H(n) is given by:

H(n) = I3 − 2nnT (13)

with I3 being the 3x3 identity matrix. In case of pseudovec-
tors s ∈ �3, reflection is performed as follows:

sm = det(H(n))H(n)s. (14)

To reflect the giver’s hand orientation expressed as a rota-
tion matrix R ∈ SO(3), given the axis convention utilized
in this work, y and z axes of the giver’s hand are reflected
as polar vectors while the x axis as a pseudovector. Figure 2
demonstratesmirroring in the case of a right handed giver and
receiver. It shows how the giver’s hand frame in the initial
pose is mirrored with respect to the yz target plane. As mir-
roring actions depend solely on the hand frame, the frames
in Fig. 2 would remain the same if a left hand was used.

Moreover, the position and translational velocity are polar
vectors whereas the angular velocity is a pseudovector. Polar
vectors are reflected by applying (12), while pseudovectors
are reflected by applying (14) (Fulling et al. 2011). In the
case of mirroring with respect to the yz-plane n = [

1 0 0
]

and the reflection operator becomes H(n) = diag
[−1 1 1

]
.

Thus, given the translational and angular velocities v, ω the
mirrored velocities are given by:

vm = [−vx vy vz
]T

(15)

ωm = [
ωx −ωy −ωz

]T
. (16)

3.2 Mirroring hypothesis validation

To test this hypothesis, we have selected 5 different initial
giver poses and the respected mirrored poses and a fixed tar-
get (by fixing the receiver’s pose). From each initial pose
P we recorded 10 hand-over motions between humans to
the fixed target, producing trajectories Ti , i = 1 . . . 10. We
also recorded the corresponding hand-over motion from the
mirrored pose Pm , producing trajectories Tmi , i = 1 . . . 10.
Using color markers at the demonstrator’s hand the initial
pose P was extracted using a kinect 1 sensor. The C++
library ”VTK” was used to visualize this frame as well as
the mirrored pose Pm that was computed analytically. Then,
in each of the 10 repetitions, the demonstrator’s hand place-
ment was facilitated by ensuring that his hand’s frame was
visually close to that of P (or Pm for the motion starting from
the mirrored pose). Nevertheless, this placement procedure
yielded some initial errors in the pose’s estimate. Moreover,
the recorded trajectories differ slightly from one another due
to the inherent variance in the human motions.

The recorded trajectories Ti were then aligned using
Dynamic Time Warping (DTW) in order to have the same
length (Amin and Mahmood 2008). For the DTW we used
dn(p1, p2) + do(Q1, Q2) as distance metric between two
poses p1, Q1 and p2, Q2, where:

dn(u, v) = 1

2

‖u − v‖2
‖u‖2 + ‖v‖2 (17)

is the normalized distance between vectors u, v ∈ �m , and

do (Q1, Q2) = norm(eo(Q1, Q2)) (18)

with eo given by (31). Then, we measured the distance
between respective points in all trajectory pairs {Ti , Tj } for
i 
= j yielding 45 distance trajectories; the Euclidean dis-
tance was utilized for positions and the cosine distance of
the quaternions for the orientation. The mean plus/minus the
standard deviation for each point of the distance trajectories
was utilized to define a region expressing the admissible tra-
jectory variability. Figure 3 illustrates the admissible region
for two different initial poses (green regions). Notice that
the admissible region becomes narrower as we get close
to the target. This is attributed to inaccurate placement of
the giver’s hand in each initial pose P which yielded up
to 7 cm initial errors for the position and 0.05 ∈ [0 1])
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Fig. 3 Admissible region for two different initial poses (green regions)
with examples of distance trajectories between {Ti , T̂m j } (red lines)

in the cosine distance and the fact that all trajectories con-
verge to the same target as the motion evolves. Then, for
each of the recorded Tmi we have created by reflection T̂mi

and tested the mirroring hypothesis by checking whether the
distance trajectories calculated from {Ti , T̂m j } ∀i, j belong
to the admissible region. This procedure was repeated for
the five different initial poses. Figure 3 shows with the red
lines, examples of distance trajectories from {Ti , T̂m j }. It can
be observed that distance trajectories lie almost completely
within the green region, whichmeans that the error between a
trajectory starting from P and its reflection starting from Pm
has an error comparable to that of the variance attributed to
measurement errors and the inherent variance in the human
motion. Consequently, these experiments underpin our alle-
gation of mirroring in human motions during hand-over.

Remark 2 Notice that mirroring would not be useful if there
were demonstrations crossing significantly the yz-plane.
However such handover scenarios are not expected since
either an overly bendedmotion that would cross the yz-plane
would be infeasible due to the arm’s kinematic constraints
and/or it would be highly unnatural for a human to perform
such a curved motion without a reason, deviating from the
target and then converging to it. In our demonstrations a
marginal cross-over of the yz-plane was observed in the case
a demonstration started very close to the yz-plane or when
the hands of the giver and receiver came close to each other.
As these cross-overs occur very close to the boundary of the
yz-plane, their impact was found negligible.

3.3 Mirroring during execution

Let us assume that a DS is trained in the half space cor-
responding to x < 0. At the implementation stage, when
mirroring actions are required we mirror the current pose

using (12), (14) as well as the model output using (15) and
(16). Specifically, the pseudocode in Algorithm 1 describes
the use of mirroring with the DS at the execution stage.

Algorithm 1: Pseudocode for mirroring in DS

Input : Current pose p = [x y z]T , R
Target pose pd = [xd yd zd ]T , Rd
expressed in the same inertia frame, e.g. the camera

frame.
Output: The desired velocity V = [vT ωT ]T
1: Express all poses w.r.t. the target pose:

Current pose: p̂ = RT
d (p − pd ) = [x̂ ŷ ẑ], R̂ = RT

d R

Target pose: p̂d = [0 0 0]T , R̂d = eye(3)
2: if x̂ > 0

mirrorOccured = true
Mirror position using (12): p̂ = [−x̂ ŷ ẑ]
Mirror orientation using (14) for the first column
of R̂ and (12) for the last two columns:
R̂(1, 2) = −R̂(1, 2), R̂(1, 3) = −R̂(1, 3)
R̂(2, 1) = −R̂(2, 1), R̂(3, 1) = −R̂(3, 1)

else
mirrorOccured = false

end
3: Calculate the quatenions Q̂, Q̂d from the rotation

matrices R̂, R̂d

4: Calculate ξ , given by (3), using
{
p̂, Q̂

}
,
{
p̂d , Q̂d

}

5: Caclculate the velocity V = [vT ωT ]T from (4) given ξ

6: if mirrorOccured == true
Mirror the output of the DS utilizing (15) and (16):

v = [−vx vy vz
]T

ω = [
ωx −ωy −ωz

]T
end

4 Dynamical system training and evaluation

4.1 Data acquisition

Fifty handover demonstrationswere carried out.During these
demonstrations an elderly person was chosen as the receiver
and held his hand at a fixed pose waiting for an object to
be handed over. An adult, holding an object, performed the
reaching motion towards the receiver’s hand, each time from
a different initial pose. Our aim was to capture the relative
hand pose of the giver with respect to the receiver and train
a DS that outputs the desired linear and angular velocities
given this relative hand pose. Our emphasis is on the direc-
tion of this learned velocity field rather than its magnitude,
i.e. we are more concerned with the shape of the path that
the DS produces given a relative hand pose rather than the
movement’s execution speed. The latter can be varied and
adjusted by multiplying the DS output with a positive scal-
ing factor without compromising the shape of the produced
path or the systems’s global asymptotic stability. We cov-
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ered as many relative hand poses as possible in order to have
a more complete dataset for training and testing and to be
able to generalize well in the case of a moving target with-
out the need of a predictor. The giver’s hand motion was
recorded by a kinect 1 sensor which tracked the position of
4 color markers that were attached on the giver’s hand. Thus
data for the 3D trajectory of the giver’s reaching motion was
captured. Out of the recorded demonstrations, 25 were taken
from the subspace with x < 0 and used for the training of
the DS and the rest were taken from different poses of the
entire 3D space and used to test the accuracy of the learned
model. For the training process, apart from position and ori-
entation of the human wrist, the translational and angular
velocities were obtained numerically. In fact, for two subse-
quent measurements t1, p(t1), R(t1) and t2, p(t2), R(t2), the
translational velocity was calculated by v(t1) ≈ p(t2)−p(t1)

t2−t1
and the angular velocity ω(t1) ≈ k δθ

t2−t1
, where k, δθ is the

axis-angle representation of R(t2)R−1(t1). To alleviate the
noise inserted due to the numerical differentiation, we then
applied a moving average filter to the calculated velocities.

4.2 Performancemetrics

The metrics employed to assess the accuracy of our trained
model in comparison with the recorded demonstrations
{ξ t,n, V t,n}Tn ,Nt=0,n=1, serve the purpose of quantifying how
close the paths and velocity fields are from the learned model
in comparisonwith the demonstrations. In fact, given the gen-
eralized position and velocity generated by the learnedmodel
P1, V1 and the generalized position and calculated velocity
from the corresponding demonstration P2, V2 we define the
following metrics:

M1 = 1

T

N∑
n=1

Tn∑
t=0

d1(P1, P2) (19)

Mj = 1

T

N∑
n=1

Tn∑
t=0

d j (V1, V2) (20)

where j ∈ {2, 3} is utilized to quantify the accuracy of the
learnedmodel in terms of both the direction andmagnitude of
the velocity, respectively. Given two vectors u, v ∈ �m , we

denote by dn(u, v) = 1
2

‖u−v‖2
‖u‖2+‖v‖2 the normalized distance

between u, v and by dc(u, v) =
(
1 − uT v

‖u‖‖v‖
)
the cosine

distance. Notice that dn(u, v), dc(u, v) ∈ [0 1]. Hence, we
define:

d1(P1, P2) = 1

2
(dn(p1, p2) + dc(Q1, Q2))

d2(V1, V2) = 1

2
(dc(v1, v2) + dc(ω1, ω2))

d3(V1, V2) = 1

2
(dn(v1, v2) + dn(ω1, ω2))

Notice also that M1, M2, M3 ∈ [0 1].
Before using any of these metrics, we first applied the

DTW algorithm to align the trajectories to be compared.

4.3 Evaluation results

The aim of the evaluation is to show that a single dynamical
system can be trained using only demonstrations from half
the 3D space, while still being able to produce human-like
and accurate motions in the entire 3D space via mirroring.
The evaluation was performed by simulating kinematically a
KUKA LWR4+ arm model in V-REP, following the scheme
presented in Fig. 6. Specifically, for each initial pose of the
demonstrations, we simulated themotion generated from our
model and compared it against the human demonstrations.
The aggregate results are presented in Table 1. All distance
metrics exhibit small values close to zero, which implies that
the trainedmodelwas able to reproduce efficiently the human
motion both in the training and test data sets. The similar val-
ues of the distancemetrics in the training and test sets indicate
that the model is not overtrained. Representative examples
from the train and test sets are shown in Fig. 4 where we plot
the 3D paths generated by the human (dashed line) and the
DS (solid line), enriched with frames expressing the orien-
tation of the wrist. Notice that examples in the training set
start from the trained region x < 0 whereas examples from
the test set include both trained and unseen regions in which
mirroring actions were performed. As we can observe, the
trajectories produced by the DS almost coincide with that of
the human.

To highlight the impact of using mirroring when the DS
is trained in half the space, we further conducted two sim-
ulations from the untrained subspace (x > 0) and used the
DS with and without incorporating the mirroring actions.
Figure 5 shows the simulated paths together with the respec-
tive human demonstrations (blue lines); it does also include
two cases from the trained subspace (x < 0) for comparison
purposes. It is clear that without mirroring, the trajectories
generated from theDS (dashed lines) fail to imitate the human
motion although they converge to the target. By employing
mirroring in these cases, the generated path is similar to that
of the human.

Table 1 Evaluation results

Distance Metric Training set Test set

M1 0.0177 0.0159

M2 0.1708 0.199

M3 0.1523 0.206
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b the test set. a Training set paths. b Test set paths
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Fig. 6 Proposed control scheme

5 Object load transfer strategy

The object load transfer strategy proposed in Psomopoulou
and Doulgeri (2015) considers the case of a robotic giver
hand under a control law that achieves a stable grasp equi-
librium state via fingertip rolling and accurate estimates of
the object’s weight. A Lyapunov based theoretical analysis

performed for the overall system comprised by the object and
the two hands of the giver and receiver shows that the sys-
tem converges to a new attractive equilibrium. In the absence
of a robotic hand with rolling fingertip capabilities, one can
adapt the strategy of Psomopoulou andDoulgeri (2015) using
force/torque sensing or estimation while keeping the basic
concept that allows the safe object transfer. In particular and
similarly to Psomopoulou and Doulgeri (2015) the strategy
is receiver initiated in the sense that the giver follows closely
the receiver’s lead in load transfer, ensuring haptically that
the full load from the object’s weight has been transferred
to the receiver. The initial state is that the robotic giver has
already grasped an object and has an accurate estimation of
the object’s weight via a force/torque sensor located on its
wrist and that another hand (the receiver’s hand) is grasping
the object. The strategy for the robot giver is to continu-
ously estimate its load in the gravity direction and ensure the
object’s load safe handover before releasing it. In this work,
the latter is performed when the weight estimation crosses
zero which means that the giver has been relieved from the
object’s load. As during the approaching phase disturbance
forces may arise that can jeopardize this haptic cue, visual
sensing can be utilized to ensure that a joint grasp occurs.
Notice that the proposed object load transfer strategy does
not assume or require a stationary target as demonstrated in
the experimental results.

6 Handover simulations

Handover simulations are carried out in V-REP using two
KUKA LWR4+ robotic arms with a Barrett BH8 Hand
attached to their wrists which are equipped with torque sen-
sors at thefinger’s last joints. Thefirst one represents the robot
(giver) and the second one is used to simulate the behavior
of the human (receiver). During the handover, both partici-
pantsmove their arms according to the trainedDS.Hence,we
utilize the DS to also simulate the movement of the human-
receiver. Although such a hypothesis about the receiver’s
motion is not verified in our work, it is a human-like motion
given that the DS was trained from human demonstrations
and was able to replicate the human motion with sufficient
accuracy. It is further assumed that the giver stably grasps
an object during the approaching phase. Its target frame is
associated with the receiver’s hand frame as perceived by the
camera. When at target, the receiver closes the fingers with
a predefined velocity until the reaction force sensed by the
finger torque sensors exceeds a predefined threshold. Then,
the receiver’s hand tries to move upwards taking the object
load. The giver which is monitoring the object’s load at the
gravity direction senses when the object load is fully trans-
fered and releases its grip. After the handover completion,
both arms retract.
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Table 2 Giver’s and receiver’s target for each simulation case

Simulation case Giver’s target Receiver’s target

1: Moving target Receiver’s hand Giver’s hand

2: Mixed target Receiver’s hand Final exchange site

3: Fixed target Final exchange site Final exchange site
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Fig. 7 3D oriented path of the human’s and robot’s hand during the
approaching phase towards the target (yellow circle). aCase 1—moving
target. b Case 2—mixed target. c Case 3—fixed target

To highlight our argument, that a natural handover can
take place given that both participants share the collaborative
intent to reach each other’s hand, without any prior knowl-
edge of the final exchange location, we carry out, at first,
three handover simulation cases of a cylindrical object of
mass 0.3 kg, height 22 cm and radius 4.4 cm. In all cases, the
initial configurations of the giver’s and receiver’s arms was
the same. Specifically, in the first case, both the giver and the
receiver considered as target the current hand pose of each
other; as a result the handover exchange takes place in an
a priori unknown location. In the second case, the receiver
regards as target an a priori known final exchange location,
whichwas set at the exchange location resulting from the first
simulation case. The assumption is that the receiver moves
towards the predefined fixed exchange location irrespective
of the giver’s motion. Finally, in the third case both partic-
ipants consider as target the fixed exchange location. These
cases are summarized in Table 2.

The generated trajectories, paths, velocities and force
responses are depicted in Figs. 7, 8, 9 and 10. The princi-
pal time instances of the first handover simulation are shown
in Fig. 11. Examining the 3D paths of the giver and receiver
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Fig. 8 3D paths of giver and receiver with respect to the camera frame
during the approaching phase for each simulation case
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Fig. 9 Euclidean norm of linear and angular velocities of giver (blue
line) and receiver (green line). a Case 1—moving target. b Case 2—
mixed target. c Case 3—fixed target

during the approaching phase in Fig. 7 it is evident that the
giver’s path exhibits a wider bend in the second case Fig. 7b
compared to the third case Fig. 7c where the final handover
location was known a priori. This is exactly the undesired
behavior pointed out in Widmann (2016) and (Prada and
Remazeilles 2012) which encourages the prediction of the
exchange site. However, the fact that the receiver was not
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Fig. 10 Force sensed by the wrists of the giver (blue line) and the
receiver (green line) in the gravity field during the object load transfer.
a Case 1—moving target. b Case 2—mixed targe. (c) Case 3—fixed
target

very cooperative during the handover, in the sense that he
doesn’t take into consideration the giver’s motion and just
moves independently to a predefined location, accounts for
the giver’s excessive curved motion. Nevertheless the giver
finally reaches the receiver’s hand. Were the mutual consen-
sus to reach the hand of the other participant also shared
by the receiver, a more natural handover could be obtained.
This is substantiated by the paths illustrated in Fig. 7a, where
the presented paths resemble much more those from Fig. 7c.
Still the giver’s path in Fig. 7a appears slightly more curved
than the path in Fig. 7c, but this should come as no surprise
since the giver doesn’t know beforehand where the receiver’s
hand will eventually stop. As the giver quickly adapts his
motion thanks to the tacit consensus of both participants to
move towards one another a natural handover takes place. All
these remarks can be more easily discerned in Fig. 8, where
we provide the 3D paths of giver and receiver for each sim-
ulation case, having omitted the orientation frames to avoid
overcrowding the image. What is further revealed in Fig. 8
is that in the second case the exchange takes place at a loca-
tion which differs from the predetermined receiver’s target.
This happens because the giver moves faster, as his target
(receiver’s hand) is further apart. As a result he reaches the
receiver’s hand, while the latter is in his way to his prede-
termined target. The lack of collaboration in reaching each
other’s hand (mainly from the receiver’s part) produces less
smooth responses as can be concluded from the paths in Fig. 8
and the velocities in Fig. 9.On the contrary, both the paths and
the velocities of the giver and receiver appear quite smooth
in the other cases.

Finally, Fig. 10 shows measurements of the wrist force-
torque sensor from the giver and the receiver in the gravity
direction. These measurements are estimates of the object’s
weight during the handover (the weight of the Barrett hand

Fig. 11 Time instances from the 1st case handover simulation. In c the
red arrow indicates the direction towards which the receiver pulls the
object. a Giver grasps object. b Joint grasp. c Giver releases object. d
Handover is complete

has been subtracted).We can distinguish two phases (denoted
by the time span between the vertical dashed lines). The first
denotes the time the receiver fingers close for grasping creat-
ing a disturbance load (in this case pushing slightly towards
the gravity direction) before starting in the second phase to
exchange the object load while pulling away. Figure 11(c)
shows a snapshot of the V-REP at the joint object grasp and
the direction of the receiver’s hand pulling (red arrow).When
the weight estimate crosses zero beyond a threshold value
the giver releases the grip following the proposed strategy.
Note that some vicissitudes observed during the object load
transfer are because of the forces applied during contact that
give rise to disturbances, while before and after the object
load transfer are to be attributed to forces generated by the
dynamics of the motion.

More simulations have been further performed for a
moving target with different scenarios regarding the object
geometry and weight, the motion velocity and consequently
the reaching distances of the giver and the receiver as well
as their relative initial poses. Figures 12–14 show respec-
tively the 3D oriented path of the giver and the receiver, the
euclidean norm of their linear and angular velocities during
the approaching phase and the force sensed by their wrists in
the gravity field during the object load transfer. The giver’s
velocity was scaled by 1.2 in all cases. Figures 12a, 13a and
14a correspond to a handover of a cuboid object of 0.1 kg
with the receiver’s velocity scaled by 0.7. Figures 12b, 13b,
14b depict a handover of a cylindrical object of 1 kg where
the receiver is much slower (its velocity is scaled by 0.5).
Notice the receiver’s shortest path and the difference in the
velocity magnitude in the respective figure plots.
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Fig. 12 3D oriented path of the human’s and robot’s hand during the
approaching phase towards the target (yellow circle). a Lighter cuboid
object. b Heavier cylindrical object

0

0.2

0.4

0.6

0

1

2

0

0.2

0.4

0.6

0 0.5 1 1.5

0 0.5 1 1.5

0 0.5 1 1.5

0 0.5 1 1.5
0

1

2

(a) (b)
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Fig. 14 Force sensed by the wrists of the giver (blue line) and the
receiver (green line) in the gravity field during the object load transfer.
a Lighter cuboid object. b Heavier cylindrical object

7 Handover experimental results

The proposed method was also evaluated in a real handover
setting with a KUKA LWR4+ robotic arm, equipped with a
Barret BH8 hand, handing over different objects to a left and
right-handed human receiver. The robot motion is generated
by the trained DS fed by the human’s current hand pose as
target with respect to the current robot’s hand pose, which
is calculated by the robot’s forward kinematics. To track
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Fig. 15 Experimental results of the 3Doriented path of the human’s and
robot’s hand during the approaching phase. The yellow circle denotes
the final exchange site. a right-handed human receiving a bottle. b left-
handed human receiving a box
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Fig. 16 Experimental results of the euclidean norm of linear and angu-
lar velocities of the robot giver. a Right-handed human receiving a
bottle. b Left-handed human receiving a box

the human’s hand pose, 4 AR tags attached at the human’s
hand are tracked by a stationary Kinect 1 sensor to increase
the vision system’s robustness. During the motion, KUKA’s
external force estimator is used to monitor the external force
along the gravity direction. When this force crosses zero the
hand opens its grip. We utilize the DS output to obtain the
desired end-effector velocity Vd . In order to smooth the tran-
sition from the initially stationary robot to the initial desired
velocity Vd(0)which is generally not zero, velocity errors are
passed from a first order filter utilizing a time constant that
ensures fast convergence to the generated DS output Vd(t).
Then, we use the first order inverse kinematics to obtain the
joint velocities which are integrated and given as joint refer-
ences to KUKA. In case the object load transfer is completed
with non zero velocities the robot is commanded to decelerate
to zero and retract to the initial position.

Experimental results from twohandover scenarios are pre-
sented in Figs. 15–17, where the 3D oriented paths of the
human and the robot, the robot’s velocity and its perceived
force at the wrist are depicted. In the first experiment a right
handed standing human receives a bottle of 0.3 kg, while, in
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Fig. 17 Experimental results of the force sensed by the wrist of the
robot giver in the gravity field during the object load transfer. a Right-
handed human receiving a bottle. b Left-handed human receiving a box
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Fig. 18 Experimental results of the 3D oriented path of the human’s
and robot’s hand during the approaching phase. The human changes
his position and hand orientation at the time instances t1, t2, t3 before
receiving the object at time tend .

the second experiment a left handed standing human receives
a rectangular box of 0.25kg. Figure 15 shows the 3D paths
of the robot as well as the human path that is smoothed in
order to alleviate the noise introduced by the vision system.
In Fig. 16 we can see the robot’s velocity which is gradually
decreasing as it approaches the receiver’s hand. Notice the
fast deceleration to zero after the object load transfer is com-
pleted at t = 3 s in Fig. 16a and t = 2.3 s in Fig. 16b as
indicated by the zero crossing of the force in Fig. 17. Last, a
complex hand-over case is performed with a user purposely
changing his hand position and orientation three times after
the robot has initiated his approaching motion as shown in
Figs. 18–20. Despite the unrealistic scenario, the advantages
of the proposedmethod are clearly demonstrated. The human
changes his hand pose at time instances t1, t2, t3 shown in
Fig. 18 before receiving the object at time tend . In Fig. 19
the corresponding linear and angular velocity of the robot is
depicted, where we can see the velocity norm decreasing as
the robot approaches the human’s hand and increases again
when the human moves away. Finally, in Fig. 20 the instant
the handover takes place is indicated by the zero crossing of
the sensed force in the gravity direction. These experiments
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Fig. 19 Experimental results of the euclidean norm of linear and angu-
lar velocities of the robot giver
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Fig. 20 Experimental results of the force sensed by the wrist of the
robot giver in the gravity field during the object load transfer

together with other scenarios are included in the uploaded
video.

8 Conclusions

In this work, an approach for stable robot to human handover
is presented utilizing a dynamical system and an object load
transfer strategy that ensures full load transfer before grip
release. The dynamical system encodes humanwrist position
and orientation during handovers from a set of demonstra-
tions to a fixed target. DS training takes advantage of the
mirroring revealed by our study. Evaluation results show
that human motion is reproduced efficiently based on three
performance metrics regarding positions and velocities. It is
shown that the proposed DS can execute successfully and
naturally handovers even in the case of a moving receiver,
without the need to predict the final exchange site. We val-
idate our method by conducting handover simulations in
V-REP using twoKUKALWR4+ robotic armswith a Barrett
Hand model attached to their wrists to model the giver and
receiver. We have also demonstrated the efficacy of the pro-
posed approach experimentally utilizing a KUKA LWR4+,
different objects and left and right handed human receivers.
As a future work we aspire to apply the proposed DS to bi-
manual manipulations.

Appendix: Unit quaternion preliminaries

A four-parameter representation of the orientation is the

unit quaternion defined as Q = [
η εT

]T
with η ∈ �

being the scalar part and ε ∈ �3 the vector part and which
are related with the angle-axis representation of orientation,
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r ∈ �3, θ ∈ � as follows:

η = cos
θ

2
(21)

ε = r sin
θ

2
(22)

Notice that utilizing the angle-axis representation, one spe-
cific rotation can be expressed with two different ways: a
rotation by −θ around −r or a rotation by θ around r . On
the contrary, utilizing the quaternion representation there is
a unique expression for each rotation (Siciliano et al. 2010).
The following properties hold for unit quaternions:

QT Q = 1 (23)

QT Q̇ = 0 (24)

Q−1 =
[

η

−ε

]
(25)

Composition of unit quaternions Q1 = [
η1 εT1

]T
and Q2 =[

η2 εT2

]T
, denoted by the operator ∗, yields the unit quater-

nion corresponding to the respective rotation matrix product
R1R2 where R1, R2 ∈ SO(3):

Q1 ∗ Q2 =
[

η1η2 − εT1 ε2
η1ε2 + η2ε1 + ε1 × ε2

]
(26)

Given the current and desired rotation matrices R ∈ SO(3),
Rd ∈ SO(3) as well as the respective quaternions Q, Qd ,
the relative rotation RRT

d , can be defined in terms of the

quaternion ΔQ = [
Δη ΔεT

]T
as follows:

ΔQ = Q ∗ Q−1
d (27)

Notice that ΔQ = [
1 01×3

]T
if and only if Rd = R.

Unit quaternion time derivatives are related to the angular
velocity ω expressed in the inertia frame as follows (equa-
tions (3.94)-(3.95) from Siciliano et al. (2010)):

η̇ = −1

2
εTω

ε̇ = 1

2

(
ηI3 − ε̂

)
ω

(28)

which can be written compactly as:

Q̇ = 1

2
JQω (29)

where

JQ =
[ −εT

ηI3 − ε̂

]
∈ �4×3. (30)

Given (26)–(27), a minimal representation of the orienta-
tion error eo ∈ �3 can be defined via the vector part of the
quaternion error as follows:

eo � Δε = ηdε − ηεd − ε̂εd (31)

with ε̂ denoting the skew symmetric matrix of vector ε.
Notice that (31) can be written as:

eo = −J TQ Qd (32)

Substituting (29) in (24) yields J TQ Q = 0; thus, eo can be
written also in the following form:

eo = J TQ (Q − Qd) . (33)
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