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Abstract— This paper proposes a controller for the stable
grasp of an arbitrary-shaped object on the horizontal plane
by two robotic fingers with rigid hemispherical fingertips. The
controller stabilizes the grasp with optimal force angles and
desired finger shaping determined through the choice of a
control constant without requiring the utilization of any contact
information regarding contact locations and contact angles or
any estimates of them. Simulation results demonstrate the
performance of the proposed controller and show its clear
advantages with respect to other known control schemes.

I. INTRODUCTION
A number of review papers summarizing progress on

multi-finger robot grasping and dexterous object manipula-
tion has been published in the last decade [1]–[4] showing
the difficult path towards achieving the dexterity and per-
formance of the human hand with robots. Despite building
multi-fingered robot hands resembling the human hand since
the early robotics research years [5]–[9] stable grasping
and in-hand fine manipulation in uncertain and dynamic
environments is far from being accomplished in a simple
natural way.

Previous research work focuses on detailed grasp analysis
and planning of form and force closure grasps [10] involving
the accurate planning of fixed contact locations and contact
forces [3], [4], [11], [12] later allowing contact motion
via rolling and/or sliding and finger-gaiting [13]–[15] thus
increasing planning and control complexity. Most of the
proposed fine manipulation controllers have been hybrid
position-force controllers or impedance controllers which
assume fixed relative contacts (no rolling or sliding) and
knowledge of the system dynamics as they essentially cancel
it out as well as other precise information on the hand and
object [3], [4].

A notable exception has been research work addressing
the design of simple feedback control laws that attain stable
grasping in a dynamic sense [16], [17] as well as object
orientation, eliminating the need of precise grasp planning
by allowing rolling contacts and avoiding the solution of
inverse kinematics and dynamics. The superposition princi-
ple introduced in [18] and the stability on a manifold for
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dexterous object grasping and manipulation [19] revealed the
possibility to address the control design of stable grasping,
object orientation and position, independently. Enhancements
in various directions followed, achieving grasping and fine
manipulation blindly without force and contact sensing for
objects with flat surfaces and arbitrary shape for both the
2D and 3D cases [20]–[23]. This class of controllers allows
initial finger-object contact with contact locations and contact
force values that do not correspond to an equilibrium state
which is attained dynamically by the rolling of the fingertips.
A recent work belonging also in this class of controllers
concerns tactile-based grasping control of arbitrary-shaped
objects focusing on grasp quality with respect to the contact
force angle optimization [24]. Use of tactile sensing has
been advocated for measuring exact contact locations [25] or
contact angles [24] but the proposed control solutions have
not been analyzed or tested with respect to their robustness
on measurement errors.

In all the above research works, finger shaping or finger
configuration is not considered. However, finger shaping, as
grasp preshapes [26], may be important in order to best adapt
to the particular geometry and subsequent intended task.
In this work, we propose a dual finger control law which
stabilizes the grasp of an arbitrary-shaped object in 2D with
optimal force angles and desired relative finger shaping with
respect to their distal links, without requiring any tactile or
force sensing.

II. SYSTEM DESCRIPTION

Consider the x-y planar case of two 3 degrees of freedom
robotic fingers with revolute joints and rigid hemispherical
tips of radius r1 = r2 = r in contact with a rigid
arbitrary shaped object, as depicted in Fig. 1. Vector qi =[
qi1 qi2 qi3

]T
, i = 1, 2 denotes the joint angles for the

ith finger. In the following, Rab denotes the rotation matrix
of frame {b} with reference to frame {a} unless the reference
frame is the inertia frame {P} in which case it is omitted.
R(θ) is a rotation through an angle θ about the z axis that
is normal to the x-y plane pointing outwards.

Let {P} be the inertia frame attached at the base of the
first finger (Fig. 1) and {O} be the object frame placed at its
center of mass (Fig. 2) and described by the position vector
po ∈ R2 and the rotation matrix Ro = R(θo).
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Fig. 1: Pair of robotic fingers grasping a rigid arbitrary
shaped object
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Fig. 2: Object and finger tip frames

Let {ti} be the ith fingertip frame described by position
vector pti ∈ R2 and rotation matrix Rti = R(φi), with

φi =

3∑
j=1

qij . Let frame {ci} be attached at the contact point

of each finger with the object with its x axis aligned with
the normal to the object surface pointing inwards. Let the
orientation of {ci} relative to {ti} be described by Rt1c1 =
R(φti) (Fig. 2). Frame {ci} is described by position vector
pci
∈ R2 and rotation matrix Rci = R(φi+φti). Let nci

, tci

∈ R2 be the normal pointing inwards and the tangential
vectors to the object at the contact points, expressed in {P},
hence Rci = [nci

tci
]. Notice that pci

= pti + rnci
.

Let the two tangential lines at the contact points form an
angle equal to 2φ0 and {δ} be a frame with its y axis placed
upon the bisector of the angle 2φ0 at a position that can be
freely chosen (Fig. 1). Line c1c2 is the contact interaction
line with length ‖pc2 − pc1‖ = l generally changing with
the contact location for an arbitrary shaped object. Let {L}
be a frame with its x axis placed upon the interaction line
c1c2. The orientation of {L} relative to {δ} is described by
RδL = R(α) (Fig. 1). From the problem’s geometry it is
clear that Rc1δ = R(φ0), Rc2δ = R(−φ0 − π). Combining
the above Rc1L = Rot(φf1) and Rc2L = Rot(φf2−π) where

φf1 = α+ φ0, φf2 = α− φ0 (1)

denote the angles between the interaction line and the nor-
mals to the contacts (Fig. 1) which for a value of φ0 are
minimized at α = 0; the grasp controller should ideally

achieve this minimum as discussed in [24]. Calculating the
relative orientation of the contact frames Rc1c2 via the object
Rc1δRc2δ

T and the fingers Rc1
TRc2 , angles φ0, φi, φti are

related as follows:

2φ0 + π = φ2 − φ1 + φt2 − φt1 (2)

We model the system under the following contact and
rolling constraints [20]:

[
Dii Di3

]  q̇i

ṗo

θ̇o

 = 0,
[
Aii Ai3

]  q̇i

ṗo

θ̇o

 = 0 (3)

where

Dii = nci

TJvi , Di3 =
[
−nci

T nci
T p̂oci

]
(4)

Aii = tci

TJvi + riJωi
, Ai3 =

[
−tci

T tci

T p̂oci
]

(5)

with poci
= pci

− po and for a vector p = [a b]T we
define p̂ = [b − a]T so that p̂Tk ∀k ∈ R2 defines the outer
product p×k. The Jacobian matrices Jvi = Jvi(qi) ∈ R2×3,
Jωi = Jωi(qi) ∈ R1×3 relate the joint velocity q̇i ∈ R3 with
the ith fingertip linear and rotational velocities ṗti ∈R2 and
ωti = φ̇i ∈ R respectively as follows:

ṗti = Jvi q̇i , ωti = Jωi q̇i (6)

The system dynamics under the contact and rolling con-
straints (3) on the horizontal plane is described by the
following equations for both fingers and the object:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Dii
T fi +Aii

Tλi = ui (7)

M

[
p̈o

θ̈o

]
+D13

T f1 +D23
T f2 +A13

Tλ1 +A23
Tλ2 = 0

(8)

where Mi(qi) ∈ R3×3,M = diag (Mo, Io), with Mo =
diag (mo,mo) the positive definite inertia matrices of the ith
finger and object respectively and mo, Io denote the object’s
mass and moment of inertia and Ci(qi, q̇i)q̇i ∈ R3 the
vector of Coriolis and centripetal forces of the ith finger. The
Lagrange multipliers fi and λi represent the applied normal
and tangential constraint forces respectively at the contacts
and let fci denote the resultant contact force magnitude. Last,
ui ∈ R3 is the vector of applied joint torques to the ith finger.

III. PROPOSED CONTROLLER

We propose the following grasping controller:

ui = −kvi q̇i − (−1)i fd Jvi
T pt2 − pt1

‖pt2 − pt1‖
− (−1)i rfd sinφJωi

T (9)
where

φ = φ2 − φ1 − γs, (10)

kvi is a positive control constant, fd is a positive constant
representing the desired grasping force magnitude at each
contact and γs is an angle that is set by the designer in
order to express the desired finger shaping. “Finger shaping”
is in this work defined by the relative orientation of the two



fingers. Hereafter the following compact notation is used for
an angle θ: sθ , sin θ and cθ , cos θ.

The first term of (9) is introduced for joint damping. The
second term represents applied forces of magnitude fd at
the direction of the line connecting the fingertips

−−→
t1t2 =

pt2 − pt1

‖pt2 − pt1‖
and the third term expresses the tangential

contact forces at equilibrium as it will be clarified in the
next section.

The proposed control law (9), (10) can be calculated using
only the robotic finger forward kinematics and the radius of
the hemispherical tips. Similarly to [23] and in contrast to
[24], it does not require any knowledge of the tangential
and normal directions at the contact and therefore no tactile
sensing is needed. Similarly to [24] it optimizes the force
angles at equilibrium as proved next and in contrast to [23]
it does not require the use of on line estimates of tangential
forces, neither conditions the grasping force magnitude on
system parameters. Last but not least, in addition to what
is achieved in [24] and [23], the proposed controller allows
the choice of any finger shaping at equilibrium. Moreover γs
may be time varying between an initial and a final shaping
value in order to interactively transition from one finger
shaping to another.

A. System Equilibrium

Substituting (9) into (7) utilizing (3) expanded by (4), (5),
the closed loop system can be written in terms of the force
errors as follows:
Miq̈i+Cfi q̇i+Dii

T∆fi+Aii
T∆λi+rJωi

T∆Ni=0 (11)

Mop̈o−
2∑
i=1

(nci
∆fi+tci

∆λi)=0 (12)

Ioθ̈o+

2∑
i=1

p̂Toci(nci
∆fi+tci

∆λi)+SN =0 (13)

where
∆fi = fi − (−1)i+1fd nci

T pt2 − pt1

‖pt2 − pt1‖
(14)

∆λi = λi − (−1)i+1fd tci
T pt2 − pt1

‖pt2 − pt1‖
(15)

∆Ni=(−1)i+1fdtci
T pt2 − pt1

‖pt2 − pt1‖
− (−1)i+1fdsφ (16)

SN =
(
p̂Toc1 − p̂

T
oc2

)
fd

pt2 − pt1

‖pt2 − pt1‖
(17)

and Cfi = (Ci + kviI3) with I3 being the identity matrix of
dimension 3.

Setting velocities and accelerations to zero in (11) yields
DT
ii∆fi+A

T
ii∆λi+J

T
ωi
r∆Ni = 0 which using (4), (5) can be

written as
[
JTvi JTωi

] [nci∆fi + tci∆λi
r(∆λi + ∆Ni)

]
= 0. Assuming

a full rank Jacobian matrix Ji =
[
JTvi JTωi

]
, we obtain

nci∆fi + tci∆λi = 0, ∆λi + ∆Ni = 0 that owing to the
independent directions leads to:

∆fi = ∆λi = 0 (18)
∆Ni = 0. (19)

Notice that (18) satisfies the object’s translational motion
equation (12) at equilibrium. The physical meaning is that,
at equilibrium, contact forces are at the direction of

−−→
t1t2

with magnitude fci = fd. Given (18), the object’s rotational
motion equation (13) yields SN = 0 and in turn utilizing
(17) (

p̂Toc2 − p̂
T
oc1

) pt2 − pt1

‖pt2 − pt1‖
= 0 (20)

Notice that poc2 − poc1 = pc2 − pc1 , −−→c1c2 is the
interaction line vector; hence (20) indicates a zero outer
product of −−→c1c2,

−−→
t1t2 which implies that these lines are

parallel at equilibrium. Consequently, contact forces lie on
the interaction line. Hence, force angles at equilibrium satisfy
the following:

tan−1
(
λi
fi

)
= φfi (21)

To proceed, notice that if we express pt2 − pt1 in frame {δ}
denoted by left superscript we can write:
δ(pt2 − pt1) = δ(pc2 − rnc2)− δ(pc1 − rnc1)

= RδL[l 0]T + rRTc1δ
c1nc1 − rRTc2δ

c2nc2

=

[
l cα
l sα

]
+

[
2rcφ0

0

]
(22)

where clearly cinci
= [1 0]T and respectively citci

= [0 1]T .
Consequently,

nT
ci

(pt2 − pt1) = cinT
ci
Rciδ

δ(pt2 − pt1)

= (−1)i+1(lcα + 2rcφ0)cφ0 − lsαsφ0

tTci
(pt2 − pt1) = citTci

Rciδ
δ(pt2 − pt1) (23)

= (lcα + 2rcφ0
)sφ0

+ (−1)i+1lsαcφ0

Utilizing (14), (15) yields, owing to (18), the values of fi
and λi at equilibrium. Substituting these equilibrium values

in (21) leads to: tan−1
(

tci
T (pt2−pt1 )

nci
T (pt2−pt1 )

)
= φfi. Using (23)

in the above expression and further substituting φfi with
respect to φ0 and α from (1) yields cφ0sα = 0. For opposing
fingers, φ0 remains within (−π2 ,

π
2 ) where cφ0 6= 0. Hence,

sα = 0 yields α = 0 for α ∈ (−π2 ,
π
2 ) indicating that the

bisector of 2φ0 is perpendicular to the interaction line at
equilibrium.

Substituting α = 0 in (22) we get the value of the length
of fingertip line at equilibrium:

‖pt2 − pt1‖ = l + 2rcφ0
(24)

Substituting α = 0 and using (24) in (23) we get:

tci

T pt2 − pt1

‖pt2 − pt1‖
= sφ0

(25)

Hence, from (16) owing to (19) and using (25), it is proved
that at equilibrium:

sφ = sφ0 . (26)

It is now clear that fdsφ appearing in the third term of the
controller (9) expresses tangential forces at equilibrium. In
general (26) implies that, at equilibrium, φ = π − φ0 or
φ = φ0 if φ ∈ (−π2 ,

π
2 ). Substituting φ from (10) in the



latter yields
φ2 − φ1 = φ0 + γs (27)

It is clear that γs affects the final relative finger orientation.
Summarizing the equilibrium state manifold of the closed

loop system:
• Contact forces [fi λi]

T applied along
−−→
t1t2 have a

magnitude fci = fd
• Fingertip line t1t2 is parallel to the interaction line c1c2
• The bisector of 2φ0 is perpendicular to the interaction

line c1c2 hence α = 0 and φfi = φ0 optimizing force
angles

• The final relative finger orientation is: φ2−φ1 = φ0+γs.

B. Stability Analysis

To facilitate the analysis, we rewrite the closed loop system
equation (7) - (9) in the following compact form collecting
all Lagrange multipliers in the vector λ = [f1 f2 λ1 λ2]T

and all system position variables in x = [q1
T q2

T po
T θo]

T .

Msẍ + Csẋ +Kvẋ +Aλ− fd

 Jv1
T (pt2−pt1 )

‖pt2−pt1‖

−Jv2
T (pt2−pt1 )

‖pt2−pt1‖
03×1


− fd

 Jω1

T rsφ
−Jω2

T rsφ
03×1

 = 0 (28)

with
Ms = diag (M1,M2,M) , Cs = diag (C1, C2, 03×3)

Kv = diag (kv1I3, kv2I3, 03×3)

A =

D11
T 03×1 A11

T 03×1
03×1 D22

T 03×1 A22
T

D13
T D23

T A13
T A23

T

 (29)

Similarly, the constraints can be written compactly as:
AT ẋ = 0.

Multiplying (28) by ẋT from the left assuming a constant

γs yields:
dV

dt
+W = 0 where:

V =
1

2
ẋTMsẋ + fd‖pt1 − pt2‖+ fdrz (t) (30)

W = kv1‖q̇1‖2 + kv2‖q̇2‖2 (31)

where z (t) =
∫ φ
0
sξdξ. Clearly V is positive definite with

respect to ẋ, ‖pt1 − pt2‖ and z (t) for −π2 < φ < π
2 in

the constraint manifold defined by Mc(x) = {x ∈ R9 :
AT ẋ = 0}. Given V̇ = −W ≤ 0, it is clear that V (t) ≤
V (0) holds and consequently ẋ, ‖pt1 − pt2‖ and z (t) are
bounded. From (16), (17) it can easily be concluded that
∆Ni and SN are also bounded.

We write alternatively the closed loop system (11) - (13)
in the following form utilizing (4) and (5):

Msẍ + Cẋ +A∆λ+B∆m = 0 (32)

C = Cs +Kv , B =

rJω1

T 03×1 03×1
03×1 rJω2

T 03×1
03×1 03×1 [0 0 1]T


∆λ = [∆f1 ∆f2 ∆λ1 ∆λ2]T , ∆m = [∆N1 ∆N2 SN ]T

In order to prove that ∆λ is bounded, we multiply (32)
by ATMs

−1 from the left, substituting AT ẍ = −ȦT ẋ and
multiplying again by (ATMs

−1A)−1 we derive:
∆λ =

(
ATMs

−1A
)−1 (

ȦT ẋ−ATMs
−1 (Cẋ +B∆m)

)
Since ∆Ni, SN are bounded, ∆m is bounded and hence
the term in the second parenthesis is bounded. Additionally,
the matrix in the first parenthesis is bounded, thus ∆λ is
bounded. Hence from (32), ẍ is also bounded and conse-
quently ẋ is uniformly continuous. We may therefore deduce
the convergence of q̇i to zero while the contact and rolling
constrains (3) yield that

ṗo − p̂oci θ̇o → 0 (33)

Eliminating ṗo by subtracting (33) (for i = 1, 2) yields:
(p̂oc2 − p̂oc1) θ̇o → 0 and in turn θ̇o → 0 and from (33)
ṗo → 0. Hence, it is proved that system velocities converge
to zero, ẋ → 0. Following the reasoning of Section III-A,
we obtain ∆fi,∆λi,∆Ni → 0. Since ẋ is bounded, x is
uniformly continuous, therefore ∆λ and ∆m are uniformly
continuous from (14), (15). Consequently (32) leads to ẍ
being uniformly continuous, thus ẍ → 0. Last from the
rotational object equation (13), it is clear that SN → 0 and in
turn following the reasoning of Section III-A α → 0 which
implies that the force angles φfi at equilibrium are optimal
and equal to φ0. Regarding x convergence it may be further
proved following the proof line in [22] that ẋ converges to
zero exponentially as t→∞.

Remark 1: If γ̇s 6= 0, (31) becomes W ′ = kv1‖q̇1‖2 +
kv2‖q̇2‖2 + γ̇s sinφ. Considering |γ̇s| ≤ b for b > 0, W ′

can be bounded as follows: W ′ ≥ kv1‖q̇1‖2 +kv2‖q̇2‖2−b.
Hence, it is easy to prove that q̇i, i = 1, 2 are uniformly
ultimately bounded and will eventually go to zero since γ̇s =
0 at the final finger shaping value.

IV. SIMULATION RESULTS

We consider two identical robotic fingers, as depicted in
Fig. 1, with r = 0.01 m and their parameters given in Table
I. The fingers are positioned at distance d = 0.02 m and
are initially at rest. We consider an object with a curved
surface of semicircular shape with mass mo = 0.08 Kg and
Io = 6× 10−8. The initial system position is given in Table
II and shown in Fig. 3 (blue line). The system is simulated
under the proposed controller as well as the controllers of
[24] and [23] for comparison purposes. Controller in [24] is
given by:

ui = −kvi q̇i + fd
(
Dii

T cφ0 + (−1)i+1Aii
T sφ0

)
while controller [23] is given by:

ui = −kvi q̇i + (−1)i
fd
2r
Jvi

T (pt1 − pt2)− Jωi

T riN̂i

where N̂i = ri
γi

∫ t
0
Jωi q̇i dτ = ri

γi
(φi(t) − φi(0)) with γi

being a positive constant estimator gain.
In all cases kvi = 0.006 for i = 1, 2 and fd = 4 while

γi = 0.001.
All three controllers achieve an equilibrium state shown

in Fig. 3 - 5. Notice that the proposed controller keeps close
to the initial finger shaping for γs = 140o (Fig. 3) similar to



Links 1 2 3
Masses (Kg) 0.045 0.03 0.015
Lengths (m) 0.04 0.03 0.02

Inertias (Kg m2)
Iz (×10−6) 6 4 2

TABLE I: Robotic fingers parameters

Joints qi1[deg] qi2[deg] qi3[deg]

i = 1 146.5335 -60.5216 -70
i = 2 41.67 54 70
Object xo[m] yo[m] θo[deg]

0.01752 0.055 0

TABLE II: Initial system pose

controllers [24] (Fig. 4) and [23] (Fig. 5). Keeping the initial
finger shaping preserves grasp preshapes. It further achieves
an equilibrium state with the smaller φ0 as compared to the
other two, although φ0 minimization is not an explicit control
objective. Notice that it is generally desirable to achieve an
equilibrium state with small values of φ0 because this is the
final force angle and improves grasping in practice, keeping
forces in the center of the friction cone.

Other desired finger shapings can be achieved for γs =
0o with φ0 = −14.19o and fingers almost parallel to each
other and γs = 90o with φ0 = −1.25o and fingers almost
perpendicular to each other (Fig. 6 and Fig. 7 respectively).
The former shaping (γs = 0o) is appropriate when powerful
grasping forces are required (bulky object) as opposed to
the latter (γs = 90o) which is more suitable for delicate tip
forces (thin object) [7]. Moreover, the former shaping may
be more appropriate for a subsequent handover task while
the latter is more suitable for a change of the object pose.
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Fig. 3: Proposed control system for γs = 140o

System time response for the case of γs = 90o are shown
in Fig. 8 - Fig. 13 and are consistent with theoretical findings.
Joint and object velocities as well as force errors converge to
zero (Fig. 8, 9 and 10 respectively). Grasping force fci (Fig.
11) is converging to the desired magnitude fd = 4 N while
force angles (Fig. 12) staying less than 20 degrees during
grasping are converging to φ0. The evolution of angles α, φ0
and φ is shown in Fig. 13; as expected, angle α is converging
to zero and φ to φ0. Notice that for curved surfaced objects,
φ0 varies with contact location. In contrast, for polygonal
shaped objects (eg. trapezoidal) φ0 is constant, therefore γs
precisely determines finger shaping through (27).
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Fig. 5: Control system [23]
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Fig. 6: Proposed control system for γs = 0o
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Fig. 7: Proposed control system for γs = 90o

The proposed controller is not only able to achieve a stable
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(b) Tangential force error ∆λi. (c) ∆Ni
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grasp without object sensing, with optimal force angle as
well as with a desired finger shaping, but it also outperforms
the other two controllers in many other aspects. First, con-
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troller [24] is very sensitive to contact direction measurement
errors. We simulated the system with a divergence of 5o

and −5o in Rci = R(φi + φti) for i = 1, 2 respectively,
affecting nci

, tci
involved in (4), (5). Simulation results show

that system response is unstable as depicted in Fig. 14 -
15. Even smaller errors ( 1o) lead the system to instability.
The proposed controller does not require the knowledge
of the contact normal and tangential directions. Second,
controller [23] requires the use of an online estimate of
the tangential forces which affects force transients that can
become oscillatory depending on the choice of the estimator
gain γi. Additionally, controller [23] achieves an equilibrium
grasping force given by fci = fd

2r (l + 2rcφ0); hence, it
is dependent on system parameters that are varying for an
arbitrary-shaped object (l, φ0) thus being out of the control of
the designer. Fig. 16 shows the grasping force response of the
system with controller [23] which achieves an equilibrium
value of 7.78 N instead of fd = 4 N. This is a disadvantage
particularly when grasping fragile objects. The proposed
controller achieves a preset desired grasping force (Fig. 11)
and therefore is safer when grasping such objects.
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Fig. 14: Force angles and φ0 evolution in case of contact
direction error with controller [24]
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direction error with controller [24]
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V. CONCLUSIONS

In this paper, a grasping controller for an arbitrary-shaped
object is proposed which optimizes contact force angles
without contact sensing while allowing any desired finger
shaping. Grasp stability and force angle optimization is the-
oretically justified and validated via simulations. Comparison
simulations showed that the proposed control law has signif-
icant advantages over two other grasping controllers which
either become unstable in the presence of contact sensing
measurement errors or they may break a fragile object at the
sensorless case. Future work includes consideration of the
gravity forces and extension to the three dimensional case.
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