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Abstract— In this paper a simple tracking controller for a
variable stiffness joint is proposed. System dynamics is con-
sidered unknown. The controller guarantees link and stiffness
motor position performance specifications that have been a-
priori set, utilizing full state feedback. Simulation results on the
previously published CompAct-VSA joint validate the efficiency
of the proposed control approach.

Index Terms— Variable stiffness joint, prescribed perfor-
mance control, uncertain system dynamics.

I. INTRODUCTION

In recent years, robot joint compliance has been considered
central into allowing the utilisation of robots in the vicinity
or in collaboration with humans by reducing intrisically the
risk of user injuries and robot damages [1], [2]. Variable joint
compliance has been recently introduced by the development
of variable stiffness actuators to be adopted in robot joints as
opposed to the fixed compliant joint solutions [3]–[9]. Vari-
able stiffness joints (VSJ) imply a more complex mechanical
design as it incorporates two actuators in order to adjust
simultaneously both the joint position and stiffness. Con-
sequently, a more complicated dynamic model is involved
particularly when a multi-dof kinematic structure has to be
considered that in turn implies a challenging control task.
The proposed control solutions have been thus far limited to
complicated algorithms assuming system model knowledge
or estimation aiming at decoupling the position and stiffness
dynamics [10]–[15]. Furthermore, none of the previously
proposed controllers can guarantee prescribed performance
characteristics on the system’s response, such as steady state
error, rate of convergence and maximum overshoot.

A design methodology, called Prescribed Performance
Control (PPC), that allows us to impose certain specifi-
cations on the performance of measurable signals of un-
certain systems was introduced lately in [16]. PPC has
been subsequently modified in [17] to achieve the required
performance specifications without even using approximators
to acquire information concerning the considered system
dynamics. The latter methodology was recently utilized to
design a controller for a flexible joint robot with variable
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joint stiffness that however neglects the mechanical system
dynamics which realizes the stiffness variation [18].

In this paper we propose a full state feedback, approxima-
tion free controller that guarantees prescribed performance
attributes on the link and stiffness motor position tracking
error of a variable stiffness joint. The proposed control
design, although it is limited to a single joint case, is to
our knowledge the only work that guarantees prescribed
performance. Simulation results on the CompAct-VSA [5]
illustrate the efficiency of the proposed control scheme.

II. PRESCRIBED PERFORMANCE PRELIMINARIES

For completeness and compactness of presentation this
subsection summarizes preliminary knowledge on pre-
scribed performance originally stated in [16]. In that
respect, consider a generic tracking error e (t) =[
e1(t) . . . em(t)

]T ∈ Rm. Prescribed performance is
achieved if each element ei (t) , i = 1, . . . ,m evolves strictly
within a predefined region that is bounded by a decaying
function of time. The mathematical expression of prescribed
performance is given, ∀t ≥ 0, by the following inequalities:

−Miρi (t) < ei (t) < ρi (t), ei (0) ≥ 0
−ρi (t) < ei (t) < Miρi (t), ei (0) ≤ 0

}
i = 1, . . . ,m

(1)
where 0 ≤ Mi ≤ 1, i = 1, . . . ,m and ρi(t), i =
1, . . . ,m are bounded, smooth, strictly positive and decreas-
ing functions, implying a bounded first derivative, satisfying
limt→∞ ρi (t) = ρi∞ > 0, i = 1, . . . ,m, called per-
formance functions [16]. As (1) implies, only one set of
the performance bounds is employed and specifically the
one associated with the sign of ei (0). The aforementioned
statements are clearly illustrated in Fig. 1, for an exponential
performance function

ρi (t) = (ρi0 − ρi∞) exp (−lit) + ρi∞, i = 1, . . . ,m, (2)

with ρi0, ρi∞, li, i = 1, . . . ,m strictly positive constants.
The constant ρi0 = ρi(0), i = 1, . . . ,m is selected such
that (1) is satisfied at t = 0 (i.e., ρi (0) > ei (0) in case
ei (0) ≥ 0 or ρi (0) > −ei (0) in case ei (0) ≤ 0). The
constant ρi∞ = limt→∞ ρi (t) , i = 1, . . . ,m represents the
maximum allowable size of ei (t) at the steady state that
can be set arbitrarily small to a value reflecting the reso-
lution of the measurement device, thus achieving practical
convergence of ei (t) to zero. Furthermore, the decreasing
rate of ρi (t) , i = 1, . . . ,m, which is related to the constant
li, i = 1, . . . ,m in this case, introduces a lower bound on
the required speed of convergence of ei (t). Moreover, the
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Fig. 1: Prescribed performance.

maximum overshoot is prescribed less than Miρi (0) , i =
1, . . . ,m, which may even become zero by setting Mi =
0, i = 1, . . . ,m. Thus, the appropriate selection of the
performance function ρi (t) , i = 1, . . . ,m, as well as of the
constant Mi, i = 1, . . . ,m, imposes performance bounds for
the tracking error ei (t) , i = 1, . . . ,m.

To introduce prescribed performance, an error transforma-
tion is incorporated modulating the tracking error element
ei (t) , i = 1, . . . ,m with respect to the required perfor-
mance bounds imposed by ρi (t), Mi, i = 1, . . . ,m. More
specifically, we define:

εi (t) = Ti

(
ei (t)

ρi (t)

)
, i = 1, . . . ,m (3)

where εi (t) , i = 1, . . . ,m is the transformed error and
Ti (·) , i = 1, . . . ,m is a smooth, strictly increasing function
defining a bijective mapping:

Ti : (−Mi, 1)→ (−∞,∞), ei (0) ≥ 0
Ti : (−1,Mi)→ (−∞,∞), ei (0) ≤ 0

}
i = 1, . . . ,m.

(4)
A candidate transformation function, illustrated in Fig 2,
could be

Ti

(
ei (t)

ρi (t)

)
=


ai ln

(
Mi+

ei(t)

ρi(t)

1− ei(t)
ρi(t)

)
, in case ei (0) ≥ 0

ai ln

(
1+

ei(t)

ρi(t)

Mi− ei(t)ρi(t)

)
, in case ei (0) ≤ 0

(5)

i = 1, . . . ,m, where ai are positive design constants. As
(4) implies and the aforementioned example clarifies, the
choice of the mapping Ti (·) , i = 1, . . . ,m, depends only
on the sign of ei (0) , i = 1, . . . ,m. Notice also that since
ρi (0) , i = 1, . . . ,m is selected such that (1) is satisfied at
t = 0, εi (0) , i = 1, . . . ,m is finite owing to (4). The case
of ei (0) = 0 requires the choice of Mi 6= 0, i = 1, . . . ,m,
since otherwise (i.e., Mi = 0) εi (0) , i = 1, . . . ,m becomes
infinite.

Owing to the properties of the error transformation, we
satisfy the prescribed performance (1) for all t ≥ 0, by
keeping εi(t), i = 1, . . . ,m bounded. Notice that the bounds
of εi (t) , i = 1, . . . ,m do not affect the evolution of
ei (t) , i = 1, . . . ,m, which are solely prescribed by (1) and
thus by the selection of the performance functions ρi (t) , i =
1, . . . ,m as well as the constants Mi, i = 1, . . . ,m.
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Fig. 2: The transformation function.

III. PROBLEM DESCRIPTION AND CONTROLLER DESIGN

Let us consider a variable stiffness joint (VSJ) consisting
of two modules, the stiffness actuator module which regu-
lates the stiffness and the position actuator module which
regulates the joint’s link position. A reduced model of the
aforementioned system can be expressed as follows [5]:

Mq̈ + Cq̇ + gl sin q = τE(θ, q, θk) (6)
Jθ θ̈ +Bθ θ̇ + τE(θ, q, θk) = τm (7)

Jkθ̈k +Bkθ̇k + τR(θ, q, θk) = τk (8)

where q ∈ R is the link angle, θ ∈ R is the link motor angular
position, θk ∈ R is the stiffness motor angular position, while
q̇, θ̇, θ̇k ∈ R are the respective velocities. Moreover, M ∈ R
is the link inertia, C ∈ R is the link friction coefficient,
Jθ, Jk, Bθ, Bk ∈ R are the two motor inertias and damping
coefficients respectively, the latter including both the physical
damping and back emf damping of the motors. In addition,
gl = mglc, where m is the link mass, g is the gravity
acceleration and lc is the distance to the link center of mass.
Moreover, τE is the elastic torque given by

τE = KE
θ2
k

(∆− nθk)2
(θ − q) (9)

where KE ,∆, n are positive constants and τR is the resistant
torque given by

τR = KR
θk(θ − q)2

(∆− nθk)3
(10)

where KR is a positive constant. A schematic of the actuator
model and operation principle is shown in Fig. 3. For the

Fig. 3: Schematic of the actuator model and operation
principle.
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Fig. 4: The proposed control scheme.

joint stiffness KE
θ2k

(∆−nθk)2 in (9), it is considered

KE
θ2
k(t)

(∆− nθk(t))2
≥ k > 0,∀t ≥ 0 (11)

where k a possibly small constant and

∆ > nθk(t),∀t ≥ 0 (12)

Both (11), (12), which are imposed by construction and low
level firmware limits [5], are required to establish a well-
defined joint stiffness representation as well as a controllable
VSJ model (6)-(8). The latter is clarified by noticing that
a direct consequence of (11) is |θk(t)| > 0,∀t ≥ 0; thus
avoiding dropping stiffness to zero, which would lead to an
unactuated system. Finally τm, τk ∈ R are the motor torques
after the reduction drives which are given by τm = kθum
τk = kkuk where um, uk are the input voltages and kθ, kk
are positive electrical motor constants.

For the VSJ system (6)-(12), the state x =
(q, q̇, θ, θ̇, θk, θ̇k) is assumed to be available for
measurement, while its dynamics is assumed to be
unknown.

Our goal is to design a state feedback controller to control
the outputs q, θk of the VSJ to track a given, smooth
and bounded reference trajectory qd(t) ∈ R, θkd(t) ∈ R
respectively, with prescribed performance. This means that
the output error should be guaranteed to converge to a
predefined arbitrarily small residual set, with rate less than a
prespecified value, exhibiting maximum overshoot less than
a sufficiently small preassigned constant. Moreover, all other
closed loop signals should be kept bounded. The above task
shall be referred to as the Prescribed Performance Control
for a Variable Stiffness Joint (PPC/VSJ) problem.

Remark 1: The stiffness actuator desired trajectory θkd(t)
corresponds to a desired joint stiffness trajectory that is
assumed to be provided by a suitable safety or interaction
control level on the basis of the requirements set by the par-
ticular application and context. For example, a low velocity-
high stiffness policy was utilized in [7], [19]. The issue of
exactly determining θkd(t) goes beyond the scope of this
paper to be addressed in detail.

A. The Proposed Control Scheme

Let us define εi, i ∈ {q, θk, vq, θ, vθ, vk} as

εi = Ti

(
ei
ρi

)
∈ R, (13)

with eq = q − qd ∈ R, eθk = θk − θkd ∈ R, evq = q̇ − vq ∈
R, eθ = θ − θr ∈ R, evθ = θ̇ − vθ ∈ R, evk = θ̇k − vθk ∈ R
where vq, θr, vθ, vθk are intermediate control signals defined
below and

ϑTi =
1

ρi

∂Ti

∂
(
ei
ρi

) ∈ R, i ∈ {q, θk, vq, θ, vθ, vk} (14)

Notice that ϑTi > 0. A solution to the considered problem,
is provided by

um(t) = −κvθ
(
ϑTvθ + ϑT−1

vθ

)
εvθ (15)

vθ(t) = −κθ
(
ϑTθ + ϑT−1

θ

)
εθ (16)

θr(t) = −κvq
(
ϑTvq + ϑT−1

vq

)
εvq (17)

vq(t) = −κq
(
ϑTq + ϑT−1

q

)
εq (18)

uk(t) = −κvk
(
ϑTvk + ϑT−1

vk

)
εvk (19)

vθk(t) = −κθk
(
ϑTθk + ϑT−1

θk

)
εθk (20)

where, in (15)-(20), κvθ , κθ, κvq , κq, κvk and κθk are positive
control gains. Fig. 4 illustrates the proposed control scheme.
The following theorem summarizes the main results of the
paper.

Theorem 1: Consider a variable stiffness joint (6)-(12).
The controller (15)-(20) with the signals εi, ϑTi, i ∈
{q, θk, vq, θ, vθ, vk} as defined in (13), (14), solves the
PPC/VSJ problem.

Proof. The proof of Theorem 1 can be found in the
Appendix. �

The proposed controller achieves any performance require-
ment for the system output (q, θk) regarding the steady state
error, the speed of convergence as well as the overshoot using
state feedback and without requesting any knowledge of the
system nonlinearities. Experiments verifying the prescribed
performance control methodology have already been con-
ducted on a single rigid link robot [20] and from the expe-
rience gained thus far the most significant implementation
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Fig. 5: Link and motors angle evolution.
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Fig. 6: Output errors (solid lines) along with performance
bounds (dashed lines).

issue that arises in this type of controllers is related to their
discretization which can however be resolved if sufficiently
fast sampling frequency is allowed. To the best of the authors
knowledge, the controller summarized in Theorem 1 is by far
the simplest architecture reported in the relevant literature
capable of succeeding such a demanding task for a variable
stiffness joint.

IV. SIMULATION RESULTS

In order to demonstrate the proposed control scheme we
consider the compact variable stiffness actuator presented in
[5], the CompAct-VSA. Link friction is neglected (C = 0)
while the values of the remaining model parameters are given
in Table I.

We set x(0) = [1 0 1.0248 0 2.15 0]T. The initial value of
θk corresponds to a stiffness value of 200Nm/rad. Our pur-
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TABLE I: Model system parameters

Parameter Value Unit
M 0.162 kgm2

Jθ 0.0575 kgm2

Jk 0.0062 kgm2

Bθ 7.7781 Nms/rad
Bk 0.5262 Nms/rad
m 2 kg
lc 0.3 m
KE 1.62 · 10−4 Nm2/rad2

KR 2.4 · 10−6 Nm3/rad2

∆ 0.015 m
n 0.006 -
km 1.4139 Nm/AΩ
kk 0.6014 Nm/AΩ

pose is to force the outputs q, θk to track the smooth, bounded
trajectories qd(t) = 1 + 0.1745 sin t and θkd(t) = 2.3 +
7∑
i=1

(−1)i0.15/
[(

1 + e−20(t−σi))] where σ1 = −0.3, σ2 =

0.4, σ3 = 0.906, σ4 = 3.526, σ5 = 4.032, σ6 = 6.652, σ7 =
7.158 corresponding to a desired stiffness of the same form
between the values of 170 and 582Nm/rad. For the output
errors eq(t) and eθk(t) we require a steady state of no
more than 0.01rad and minimum speed of convergence
as obtained by the exponential e−4t. As the theoretical
analysis dictates, the performance requirements for the rest
of the states don’t need to be as strict. The aforementioned
transient and steady state error bounds are prescribed via
performance functions defined as in (2), with parameters
as seen in Table II. Furthermore, the output and state error

TABLE II: Prescribed performance function parameters

ρ0 ρ∞ l M
q 0.1 0.01 4 1
q̇ 10 6 2 1
θ 2 1.7 16.26 0
θ̇ 9 7 13.4 1
θκ 0.1 0.01 4 1
θ̇κ 14 12 5.92 1



transformations are chosen as in (5). We simulate the closed
loop system using the design constants κq = 19.85, κvq =
0.2, κθ = 1.1, κvθ = 16.88, κθk = 16.72, κvk = 8.66, αq =
0.018, αvq = 0.6, αθ = 13.5, αvθ = 12, αθk = 0.078, αvk =
3. As the output error performance is solely determined by
performance specifications, the selection of the above design
constants is made by adopting those values that lead to
reasonable control effort so that the maximum motor power
supply is not exceeded. The simulation results are depicted
in Figures 5-7. Figure 5 shows the link and motors angle
evolution. The output errors clearly satisfy the prescribed
performance specifications as illustrated in Figure 6. Finally
the demanded control effort (input voltages) are pictured in
Figure 7. It is clear that the control effort is reasonable for
such a control task and well beneath the maximum motor
power supply voltage which for this case is 24V for both
motors [5].

V. CONCLUSIONS

In this work a state feedback controller is proposed for
a single variable stiffness joint achieving tracking of link
and motor stiffness angles with any pre-set performance
requirements, without requesting any system knowledge.
Simulation results reveal that such a demanding task can be
achieved with reasonable control effort. Future work includes
experiments with the system [5] as well as consideration of
multi variable stiffness joint robots.

APPENDIX

We initially formulate the closed loop system dynamics in
the transformed error space. Employing the definitions of the
output and state errors eq, eθk , evq , eθ, evθ , evk , the inverse
transformations

ei = ρiT
−1
i (εi), i ∈ {q, θk, vq, θ, vθ, vk} (21)

as well as (16)-(18),(20) it is straightforwardly obtained:

q = qd(t) + eq (22)
= qd(t) + ρqT

−1
q (εq) (23)

q̇ = vq(t) + evq (24)

= −κq(ϑTq + ϑT−1
q )εq + ρvqT

−1
vq (εvq ) (25)

θ = θr(t) + eθ (26)
= −κvq (ϑTvq + ϑT−1

vq )εvq + ρθT
−1
θ (εθ) (27)

θ̇ = vθ(t) + evθ (28)
= −κθ(ϑTθ + ϑT−1

θ )εθ + ρvθT
−1
vθ

(εvθ ) (29)
θk = θkd(t) + eθk (30)

= θkd(t) + ρθkT
−1
θk

(εθk) (31)

θ̇k = vθk(t) + evk (32)
= −κθk(ϑTθk + ϑT−1

θk
)εθk + ρvkT

−1
vk

(εvk). (33)

The link and motor accelerations with respect to the trans-
formed errors are derived as

q̈ = −M−1Zq(εq, εvq , t)
−M−1ZEq (εθk , t)(q − θ) (34)

θ̈ = −J−1
θ Zθ(εθ, εvθ , t)− J−1

θ ZEθ (εθk , εθ, εq, εvq , t)
+J−1

θ kθum (35)

θ̈k = −J−1
k Zθk(εθk , εvk , t)− J−1

k Zk(εθk , εθ, εq, εvq , t)

+J−1
k kkuk (36)

where

Zq(εq, εvq , t) = Fq(q(εq, t), q̇(εq, εvq , t))(37)
ZEq (εθk , t) = FEq (θk(εθk , t)) (38)

Zθ(εθ, εvθ , t) = Fθ(θ̇(εθ, εvθ , t)) (39)
ZEθ (εθk , εθ, εq, εvq , t) = τE(q(εq, t), θ(εvq , εθ, t),

θk(εθk , t)) (40)
Zθk(εθk , εvk , t) = Fθk(θ̇k(εθk , εvk , t)) (41)

Zk(εθk , εθ, εq, εvq , t) = τR(q(εq, t), θ(εvq , εθ, t),

θk(εθk , t)) (42)

with Fq(q, q̇) = Cq̇ + gl sin q, FEq (θk) = KE
θ2k

(∆−nθk)2 ,
Fθ(θ̇) = Bθ θ̇ and Fθk(θ̇k) = Bkθ̇k.

Differentiating (13) with respect to time and using (14),
we obtain:

ε̇i =
∂Ti

∂
(
ei
ρi

) d

dt

(
ei
ρi

)
= ϑTi (ėi − νi(εi, t)) (43)

where νi(εi, t) is defined using (21) as follows:

νi(εi, t) = ei
ρ̇i
ρi

= ρ̇i(t)T
−1
i (εi), (44)

with i ∈ {q, θk, vq, θ, vθ, vk}. Substituting (21), (22), (24),
(26), (28), (30), (32) in (43) using the error definitions yields:

ε̇q = ϑTq (ėq − νq(εq, t))
= ϑTq (q̇ − q̇d(t)− νq(εq, t))
= ϑTq (vq(t) + ρvqT

−1
vq (εvq )− q̇d(t)− νq(εq, t))

ε̇θk = ϑTθk (ėθk − νθk(εθk , t))

= ϑTθk (θ̇k − θ̇kd(t)− νθk(εθk , t))

= ϑTθk (vθk(t) + ρvkT
−1
vk

(εvk)− θ̇kd(t)− νθk(εθk , t))

ε̇vq = ϑTvq (ėvq − νvq (εvq , t))
= ϑTvq (q̈ − v̇q(t)− νvq (εvq , t))

ε̇θ = ϑTθ (ėθ − νθ(εθ, t))
= ϑTθ (θ̇ − θ̇r(t)− νθ(εθ, t))
= ϑTθ (vθ(t) + ρvθT

−1
vθ

(εvθ )− θ̇r(t)− νθ(εvθ , t))
ε̇vθ = ϑTvθ (ėvθ − νvθ (εvθ , t))

= ϑTvθ (θ̈ − v̇θ(t)− νvθ (εvθ , t))
ε̇vk = ϑTvk (ėvk − νvk(εvk , t))

= ϑTvk (θ̈k − v̇θk(t)− νvk(εvk , t))



Finally, substituting the controller (15) - (20) and the
system dynamics (34) - (36) the closed loop dynamics in
the transformed error space can be written as follows:

ε̇q = −κqεq − κqϑT 2
q εq

−ϑTq (q̇d + νq(εq, t)) + ϑTqρvqT
−1
vq (εvq ) (45)

ε̇θk = −κθkεθk − κθkϑT 2
θk
εθk

−ϑTθk
(
θ̇kd + νθk(εθk , t)

)
+ ϑTθkρvkT

−1
vk

(εvk)(46)

ε̇vq = −κvqM−1ZEq (εθk , t)
{
εvq + ϑT 2

vqεvq

}
+ϑTvq

{
−M−1Zq(εq, εvq , t)− v̇q − νvq (εvq , t) +

+ M−1ZEq (εθk , t)(ρθT−1
θ (εθ)

−qd − ρqT−1
q (εq))

}
(47)

ε̇θ = −κθεθ − κθϑT 2
θ εθ − ϑTθ

(
θ̇r + νθ(εθ, t)

)
+ϑTθρvθT

−1
vθ

(εvθ ) (48)

ε̇vθ = −J−1
θ kθκvθ (εvθ + ϑT 2

vθ
εvθ ) +

+ϑTvθ
{
−J−1

θ Zθ(εθ, εvθ , t)
−J−1

θ ZEθ (εθk , εθ, εq, εvq , t)− v̇θ − νvθ (εvθ , t)
}

(49)

ε̇vk = −J−1
k kkκvk(εvk + ϑT 2

vk
εvk) +

+ϑTvk
{
−J−1

k Zθk(εθk , εvθk, t)

−J−1
k Zk(εθk , εθ, εq, εvq , t)− v̇θk − νvk(εvk , t)

}
(50)

According to the prescribed performance preliminaries, the
PPC/VSJ problem is solved if the uniform boundedness of
εi, i = {q, θk, vq, θ, vθ, vk} , is proved. The system (45)-(50)
falls within the class of MIMO systems in block triangular
form considered in [17]. Hence, the proof of Theorem 1
follows the steps of [17].
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