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A Robust Controller for Stable 3D Pinching
Using Tactile Sensing

Efi Psomopoulou1, Nicholas Pestell1, Fotios Papadopoulos2, John Lloyd1, Zoe Doulgeri3 and
Nathan F. Lepora1

Abstract—This paper proposes a controller for stable grasp-
ing of unknown-shaped objects by two robotic fingers with
tactile fingertips. The grasp is stabilised by rolling the fingertips
on the contact surface and applying a desired grasping force to
reach an equilibrium state. The validation is both in simulation
and on a fully-actuated robot hand (the Shadow Modular
Grasper) fitted with custom-built optical tactile sensors (based
on the BRL TacTip). The controller requires the orientations of
the contact surfaces, which are estimated by regressing a deep
convolutional neural network over the tactile images. Overall,
the grasp system is demonstrated to achieve stable equilibrium
poses on various objects ranging in shape and softness, with the
system being robust to perturbations and measurement errors.
This approach also has promise to extend beyond grasping to
stable in-hand object manipulation with multiple fingers.

Index Terms—Force and Tactile Sensing; Grasping.

I. INTRODUCTION

ACHIEVING human-like dexterity with robot hands has
been a major goal of robotics for many years. Various

novel robot hands have been built, often focusing on their
morphology to resemble the human hand and imitate its
functionality with use of soft materials and underactuation
[1]–[4]. However, our understanding of how signals interact
between the brain, the sensory system and the fingers is
still limited. The last decade has seen several review papers
summarising progress on multi-finger robot grasping and
dexterous object manipulation [5], [6]. A central message is
that it remains a challenge to combine all of the mechanical
and tactile sensing components necessary to achieve the
performance of the human hand with robots.

Although robotic hands with integrated soft tactile sensors
are becoming more common, almost all of the research fo-
cuses on object recognition, slip detection and grasp success
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Fig. 1: The Shadow Modular Grasper, with two tactile finger-
tips, stably grasping a brain-shaped stress toy. The controller
has rolled the fingertips so that the two lines connecting the
fingertips and the contact points are parallel. Tactile images
from the two fingertips are also shown.

prediction [7]–[9], with little work on applying tactile sensing
to achieve or improve grasp stability. However, grasp stability
and manipulation dexterity appear to be closely connected
to the rolling ability of human fingertips, which allows
for fine adjustment of the contact positions with an object
[10], [11]. Therefore, being able to robustly control fingertip
rolling via proprioceptive and tactile feedback could bridge
the gap between human and robot grasping/manipulation in
unstructured and unknown environments.

The present work makes progress in this direction by
proposing and implementing a control law that makes use of
tactile feedback to roll the fingertips of two robotic fingers
on an object’s surface into a stable grasp. We focus on
the grasp itself, assuming that the robot hand has already
reached the object in a ready-to-grasp configuration. Our
previous work focused on the planar case where no tactile
sensing was needed [12]. Here we extend the controller
to 3D where tactile information is necessary to achieve
grasp stability. The proposed controller achieves pinching of
an arbitrary-shaped object, using tactile information about
the contact orientation to reach a stable equilibrium state
by fingertip-rolling motions. No knowledge of the system
dynamics is needed nor any trajectory planning performed for
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the finger movement. A predefined desired grasping force is
also attained and the control law can be extended to achieve
in-hand manipulation using touch.

The main contributions of this work concern a robust
controller for stable pinch grasping using tactile sensing:
1) We implement a low-complexity controller that robustly
achieves grasp stability with two fingers, using only propri-
oceptive and contact information from tactile sensing.
2) The controller is validated by both simulations and exper-
iments on novel objects with a fully-actuated hand (Shadow
Modular Grasper) with custom tactile-sensing fingertips.
3) We show that the system dynamically achieves an equi-
librium with a pre-set grasping force from varied initial
configurations, assuming it is reachable by a rolling motion.

II. BACKGROUND AND RELATED WORK

Early research work on grasp control has focused on
grasp analysis and planning of form and force closure grasps
involving accurately fixing contact locations and contact
forces [13]–[15]. More recently, the availability of grasp
planning simulators has increased the popularity of data-
driven method. These approaches sample grasp candidates
from a knowledge base and rank them with reference to
a specified metric [16], [17]. All the above approaches are
characterised by static analysis.

Force closure is not sufficient for grasp stability, even
though it implies existence of an equilibrium [13]. Bohg et
al. [5] identifies a need to further study grasp dynamics and
develop analytical models that are closer to reality. One way
to work towards this is to design model-free grasp control
laws that dynamically achieve a stable grasp equilibrium
state. Previous work in this area includes feedback controllers
of low complexity using rolling contacts [11], [18].

Grasp control needs state information about the contact,
which is provided by tactile sensing at the fingertips. There
has been much work on tactile sensing in robot hands using
capacitive sensors, tactile skin, BioTac sensors, barometric
sensors [19]–[21] or optical tactile sensors, such as the
GelSight [22] and the BRL TacTip [23], [24]. This work
focuses on the TacTip because it has been integrated recently
into a fully-actuated hand, the Shadow Modular Grasper [25].
The TacTip is a biomimetic optical tactile sensor based on the
dermal papillae structure in human tactile skin, and is fab-
ricated by 3D-printing pinlike structures in a compliant skin
imaged with a camera. Estimating contact state information,
such as the pose of an object’s surface, has been recently
demonstrated using deep learning on the tactile images [26].

This paper focuses on control laws that dynamically
achieve a stable grasp equilibrium state. It extends previous
work that focused on a planar problem of achieving a
stable grasp and desired relative finger orientation by rolling
fingertips on the object’s surface, the direction of which is
singular [12]. This work considers the full 3D case where
system dynamics are more complex and rolling motion on
the contact surface has two degrees of freedom. As the
complexity of the problem increases, the need for tactile
information arises. By using a tactile sensor which accurately

perceives the orientation of the contacted surface, such as
the TacTip, we propose a robust controller that dynamically
achieves grasp stability.

III. METHODS
A. System modelling

Consider two robotic fingers of ni degrees of freedom
(DOF), labelling the fingers i = 1, 2, with revolute joints
and rigid hemispherical tips of radius r1 = r2 = r in contact
with a rigid object of arbitrary shape. This paper makes the
following assumptions:
i) It is assumed that fingertip rolling motion on the object
surface can reach an equilibrium state.
ii) Friction at the contacts is sufficient to sustain tangential
contact forces so that a rolling constraint holds at all times.
iii) Both fingertips and the objects are assumed rigid.
iv) The object’s mass is negligible.

The vector qi =
[
qi1 qi2 . . . qini

]T
denotes the joint

angles for the ith finger and po ∈ R3 is the object’s position
vector. Let pci ∈ R3 describe the position vector of each
finger’s contact point with the object. The contact frame’s
orientations are defined by the normal unit vector pointing
inwards nzi ∈ R3 and the tangential unit vectors to the
contact surface, txi

, tyi ∈ R3 (Fig. 2).
The system is modelled under the following contact and

rolling constraints:

[
Dii Di3

]  q̇iṗo
ωo

 = 0,
[
Aii Ai3

]  q̇iṗo
ωo

 = 0, (1)

where q̇i ∈ Rni are the joint velocities of the ith finger, ṗo,
ωo are the object’s translational and rotational velocities, and

Dii = nTziJvi , Di3 =
[
−nTzi nTzi p̂oci

]
,

Aii =

[
tTxi
Jvi + rtTyiJωi

tTyiJvi − rt
T
xi
Jωi

]
, Ai3 =

[
−tTxi

tTxi
p̂oci

−tTyi tTyi p̂oci

]
,

with Jvi = Jvi(qi) ∈ R3×ni , Jωi
= Jωi

(qi) ∈ R3×ni

being the translational and rotational Jacobian matrices. The
resultant vector poci = pci − po and p̂oci is the skew-
symmetric matrix formed by the elements of poci . The
symbol “ ̂ ” over a vector denotes the above diffeomorphism.

The first equation in (1) is the contact constraint implying
that the fingertip cannot leave the object’s surface. This is true
as the system is considered after initial contact with the object
is established and as long as the proposed controller applies
contact forces inwards the object. The second equation in
(1) is the rolling constraint denoting that the velocity of the
contact point on the fingertip surface is equal to the velocity
of the contact point on the object surface; i.e. that the friction
at the contact is sufficient to sustain the tangential contact
forces for the rolling motion.

The system dynamics under the contact and rolling con-
straints (1) is described by the fingers and object equations
as follows:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Dii
T fi +Aii

Tλi,

+ JTωi
KsiQsωreli = ui , (2)
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M

[
p̈o
ω̇o

]
+D13

T f1 +D23
T f2 +A13

Tλ1 +A23
Tλ2

−
[
03×3
Ks1

]
Qsωrel1 −

[
03×3
Ks2

]
Qsωrel2 = 0, (3)

where Mi(qi) ∈ Rni×ni, Ci(qi, q̇i)q̇i ∈ Rni denote the
positive definite inertia matrix and the Coriolis and centripetal
forces vector of finger i respectively. The lagrange multipliers
fi and λi =

[
λyi λzi

]T
are associated with the contact and

rolling constraints, respectively. ui ∈ Rni is the applied joint
torques vector, M=diag (moI3, Io) is the object’s positive
definite inertia matrix with object mass mo and moment
of inertia matrix Io, with I3 the identity matrix of size 3.
The relative rotational velocity between a fingertip and the
object is ωreli = ωti − ωo ∈ R3, with rotational velocities
ωti ∈ R3. The friction coefficients Ksi are a diagonal
matrix associated with the object’s spinning motion which
may occur around the interaction line

pc1 − pc2
‖pc1 − pc2‖

, −−→c1c2

and Qs is the projection matrix on the interaction line which
Qs = −−→c1c2

−−→c1c2
T .

B. Controller for stable pinching
The rolling motion of the fingertips on the contact surface

can be separated into two tangential components. The two
tangential directions txi , tyi and their corresponding contact
normals nzi define the contact frames (see Fig. 2).

Fig. 2: Contact point {ci} and fingertip {ti} frames at the
equilibrium state of grasping a trapezoidal object. The lines
connecting the contact points and the fingertips are parallel.

The rolling motion of each fingertip on the contact surface
can be analysed into its two components as follows:
• Rolling in the txi

direction, around tyi by angle φi.
• Rolling in the tyi direction, around txi

by angle ψi.
These angles φi, ψi represent the rolling distances covered
by each fingertip i = 1, 2: φ̇1 = tTy1ωt1 , φ̇2 = −tTy2ωt2 ,
ψ̇1 = tTx1

ωt1 , ψ̇2 = tTx2
ωt2 .

We propose the following grasping controller for each
finger’s joint torques:

ui =−Kviq̇i − (−1)ifdJ
T
vi

pt2 − pt1
‖pt2 − pt1‖

− rfdJTωi
[
(−1)i+1txi

sinψ − tyi sinφ
]
, (4)

where
ψ = ψ1 − ψ2, φ = φ2 − φ1, (5)

and pti is the fingertip position vector.

The controller’s tunable parameters are fd, which is a
positive constant setting the desired grasping force magnitude
at the contacts, and Kvi ∈ Rni×ni , which is a positive
definite diagonal matrix denoting the damping gain of each
joint with values chosen empirically such that, given a desired
fd, the system’s performance is as smooth as possible.

The first term of (4) is introduced for joint damping. The
second term expresses forces of magnitude fd applied on
the line connecting the fingertips

−−→
t1t2 ,

pt2 − pt1
‖pt2 − pt1‖

and

the third term represents the equilibrium tangential contact
forces.

The closed-loop system under the proposed controller,
as proved in the Appendix, is passive and asymptotically
converges to an equilibrium state manifold that satisfies the
following conditions:
1) The line connecting the centre of the fingertips

−−→
t1t2 is

parallel to the line connecting the contact points −−→c1c2.
2) The contact forces that are applied along the

−−→
t1t2 direction

have a magnitude of fd N .
3) At equilibrium ψ = βψ and φ = βφ with sinβψ = tTyi

−−→
t1t2,

sinβφ = (−1)i+1tTxi

−−→
t1t2.

Notice that the equilibrium state manifold describes antipo-
dal grasps along −−→c1c2 of fd magnitude. Hence, the proposed
controller achieves convergence to an equilibrium state in
this manifold without presetting or measuring positions of
contacts {c1}, {c2}. We remark that as there are multiple
equilibrium states that satisfy the above conditions, as dif-
ferent initial states lead to different equilibrium states in the
manifold. In consequence, the initial system configuration is
not necessarily an equilibrium state. The closed-loop system’s
passivity means that after any non-persistent disturbance the
system will always converge to a state in the equilibrium
manifold.

Further notice that the proposed control law in equa-
tions (4,5) assumes knowledge of the tangential directions
at the contacts; therefore an estimate of the contact surface
orientation is needed, which is here achieved by using tactile
sensing. This is in contrast to our previous work where tactile
sensing was not utilised [12]. However, we will show that
the controller is robust to measurement errors of the contact
surface orientation. Calculations for other quantities require
only forward kinematics of the fingers and the radius of the
hemispherical tips.

The proposed control law dynamically stabilises the grasp
of an object of any shape via fingertip rolling on the contact
surfaces with a desired grasp force fd. The fd parameter
should be set so that assumption (ii) holds and contact forces
stay within the friction cone. The controller does not assume
solving the inverse kinematics of the system for trajectory
planning neither does it depend on the knowledge of its
dynamic parameters.
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C. Tactile data acquisition and processing for the Shadow
Modular Grasper

The Shadow Modular Grasper is a fully-actuated three-
fingered robotic hand with 9 DoF (3 DoF per finger). The
hand has a 2 kg payload, with each finger applying up to 10 N
of normal continuous force and allows for a 10 kHz closed-
loop torque control [2]. The hand is fully integrated with
ROS and is provided with open APIs for grasping control.

The hand obtains tactile capabilities by replacing the
fingertips with custom-built tactile sensors [25] (see Fig 1).
The tactile fingertips are adapted from an optical biomimetic
tactile sensor developed in Bristol Robotics Laboratory, the
BRL TacTip [23]. Deformation of the tactile sensing pad is
captured with the internal camera at its native resolution of
1920 x 1080, then adaptively thresholded with a Gaussian
filter (width 27, mean 0 pixels) and subsampled/cropped to
240x135-pixel greyscale images (Fig. 1). All image acquisi-
tion and processing was carried out in Python OpenCV.

Hyperparameters Optimised values

# convolutional hidden layers, Nconv 5
# convolutional kernels, Nfilters 256
# dense hidden layers, Ndense 2
# dense hidden layer units, Nunit 64
hidden layer activation function eLU
dropout coefficient 0.01
L1-regularisation coefficient 0.0001
L2-regularisation coefficient 0.01
batch size 16

TABLE I: Neural network and learning hyperparameters.

Fig. 3: Set-up for data collection with tactile fingertip
mounted on a ABB robot arm as an end-effector. The pose
components collected are roll φ, pitch θ and depth z relative
to the sensor frame. Pose ranges used as labels to train/test
the neural network are shown in the table.

The tactile image data was used to estimate the pose from
a contacted surface relative to the sensor (Fig. 3) and thus
estimate the contact frame orientation of each finger with
respect to the hand base. The tactile image data was also
used for contact deformation measurement. A simple yet
robust measure of the difference in tactile images can be
found from the Structural Similarity Index Measure (SSIM)
[27], which can be used to measure contact deformation by
comparing a tactile image against a non-deformed reference
image [9]. Here we use eSSIM(I) = 1 − SSIM(I, Iref) as a

measure of the deformation of image I compared with the
reference image Iref , with SSIM implemented using Python
SciKit-Image and computed from the local means, variances
and cross-covariance of the two images [28]. The SSIM-
based deformation measure changed gradually as the contact
intensified, making it suitable for use in a feedback controller.

The fingertip is mounted on a 6 DoF robot arm as an
end-effector (IRB120, ABB Robotics). The fingertip then
repeatedly contacted a flat surface to gather labelled contact
data to train, validate and test a deep neural network. For
details of the deep learning method used, we refer to [26].
Each of the 5000 samples of data had a random labelled pose
(ranges in Table inside Fig. 3). The network hyperparameters
were optimised (Table I) with the training implemented in the
Python Keras library using a GeForce GTX 1660 GPU. This
work considers a two-fingered grasp; thus, the above model
procedure was repeated for both tactile fingertips.

Fig. 4: Block diagram of the proposed controller with feed-
back derived from the tactile images.

D. System Integration

For the current study, we use the predicted contact ori-
entation from the tactile sensor (Section III-C) inside the
controller of Section III-B. To that end, the predicted Euler
angles are transformed into the unit vectors txi and tyi and
expressed in the Shadow Modular Grasper’s base frame. The
predicted sensor deformation z is used to detect contact with
an object. Two Python models, one per sensor, run on the host
PC and interface with the grasp controller (in C++) which
runs in a Docker container via a ROS-network (Fig. 4).

Each finger’s joint position or torque can be controlled.
The control is implemented within a 1 kHz update loop
running inside the Docker container. The two fingertip poses
are predicted with an update rate of ∼100 ms and then
broadcasted to the grasping controller inside the Docker
container via ROS topics.

A grasp is composed of two phases:
(i) Closing phase During this phase the joints positions are
controlled to reach target angles via a PID in the rosControl
ROS-package. The hand controller switches to the next phase
once contact is detected using the SSIM (Section III-C).
(ii) Grasping phase After both sensors have detected contact,
all joints switch to torque mode and the grasping controller
(Section III-B) is activated, which leads to the hand stably
grasping the object.
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(a) Initial Configuration

(b) Final Configuration

Fig. 5: Initial configuration and system equilibrium state for the pinching controller in simulation for three different objects
of mass 0.0021 kg. A cube of side length 0.048 m, a trapezoidal object (height 0.048 m, small base 0.0277 m side angles
30 & 15 deg) and a sphere of radius 0.024 m (zoom-in detail of the parallel lines)

IV. RESULTS

A. Simulation of stable pinching

Two identical robotic fingers with rigid fingertips (radii
r = 0.015 m) are simulated in MATLAB. Three different
object shapes are used; a cube, a trapezoidal object and a
sphere. They are considered rigid and their parameters are
given in the caption of Fig. 5. System simulation is performed
under the control law (4) with damping gains Kvi = 0.07I4
for both fingers i = 1, 2 and desired grasping force fd = 4 N.

0 1 2 3 4 5

-50

0

50

-50

0

50

0 1 2 3 4 5

-1

-0.5

0

-1

-0.5

0

0 1 2 3 4 5

2

3

4

Fig. 6: Finger joint and object velocities for the trapezoidal
object as well as grasping force response.

The initial system configuration is shown in the top row of
Fig. 5. The bottom row shows the system’s equilibrium state
where it is clear that the lines connecting the fingertips and
the contact points are parallel. System time responses are
shown indicatively for the trapezoidal object in Fig. 6 and
are consistent with theoretical expectations. Joint and object
velocities converge to zero and the grasping force converges
to the preset magnitude fd = 4 N.

The only external measurements used by the proposed
controller come from the tactile sensing. Therefore, we
investigate the robustness to measurement errors in the con-
tact surface orientation. To demonstrate this, we simulate
a measurement error of 30◦, 15◦ for each contact surface
orientation respectively. This is implemented for the trape-
zoidal object, but practically it is like the fingers ‘feel’ they
are holding a cube. Simulation results show that the system
converges to a different equilibrium state of the manifold
with respect to the final finger-object pose (Fig. 7, equilibrium
configurations with (grey fingers) and without (brown fingers)
errors are overlayed).

Fig. 7: Equilibrium configuration without (brown fingers) and
with (grey fingers) tactile measurement errors of 30◦, 15◦ per
contact surface orientation.
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Fig. 8: Tactile sensor’s training and validation loss as well as performance of the trained models for depth, roll and pitch.

(a) Initial Configuration

(b) Final Configuration

Fig. 9: Initial configuration and system equilibrium state for the pinching controller on the tactile Shadow Modular Grasper
for three different objects, a stack of post-it notes, an empty cardboard box and a plastic lemon.

B. Tactile perception of contact surface orientation

Two deep convolutional neural networks were trained to
regress pose over the labelled tactile images (Section III-C).
The training involved Bayesian optimisation over the network
architecture and hyperparameters [26] (optima reported in
Table I). Pose estimation was then assessed on distinct test
sets for each sensor. Plots of the predictions versus ground
truth show good performance for all pose components (z, φ,
θ) (Fig. 8). As is evident from errors due to small vertical
pose component (Fig. 8 colourmap according to z), the
outliers are caused by little or no contact with the surface. In

Pose component Sensor 1 MAE Sensor 2 MAE range

vertical z 0.05mm 0.08mm 2.5mm
roll φ 0.22◦ 0.45◦ 16◦

pitch θ 0.18◦ 0.38◦ 12◦

TABLE II: Pose prediction performance.

the scope of this paper, information from the sensors is only
needed when there is contact with the object. The overall
accuracy is similar for both sensors and typically below
0.1 mm and 0.5◦ (Table II). Small differences between the
two sensors are negligible with respect to their ranges and
can be attributed to variations in their fabrication and optics,
such as the amount of injected gel and the camera placement.
These variations are also a reason for training a network for
each sensor.

C. Stable pinching experimental results on the tactile
Shadow Modular Grasper

We consider four different objects of different shapes and
softness (Figs 1, 9-10). The system runs under the proposed
controller with damping gains Kvi = 0.07I4, desired grasp-
ing force fd = 10 N and fingertip radius r = 0.015 m.

The controller achieves a stable grasp by rolling the
fingertips on the contact surfaces. The finger configuration
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is kept as close as possible to the initial one. Figure 9 shows
the initial configuration and the system’s equilibrium state
for households objects whose shapes resemble those used in
simulation (Section IV-A). Note the empty cardboard box
in the middle deforms under grasping into a trapezoid. The
experiments in this section show that the controller achieves
stability even in the case of soft materials.

Figure 1 shows the system’s equilibrium state for the
brain-shaped object which is the most challenging to control
because it is soft and has an uneven texture. The fingertip
and contact frames are captured from the online rendition of
the frames in RVIZ, a 3D visualisation tool of ROS, and are
overlaid on the experimental setup photo.

In both Figs 1 and 9, it is clear that the lines connecting
the fingertips and contact points are parallel, which matches
the theoretical results from Section III-B. To further test
the stability of the system, two external perturbations were
applied by pushing the right finger just before t = 235 sec and
t = 245 sec. Fig. 10 shows the finger joint angle velocities
which return to zero after perturbations; hence, the system
converges to an equilibrium state.

220 230 240 250

-100

-50

0

50

100

-100

0

100

Fig. 10: Joint angle velocities with external perturbation
while grasping an object. Initial grasp at 220 sec, large
perturbation at 235 sec, smaller perturbation at 245 sec.

V. DISCUSSION

In this paper, we have presented a dynamically stable
controller for pinching an object of arbitrary shape with two
robotic fingers. The novelty with respect to our previous work
in this area [12] lies in the use of tactile sensing to address
grasp stability in a 3D setting. This was attained by using
a convolutional neural network to extract the orientation of
the contact frames for use in the controller. We showed that
the system is robust to tactile measurement errors, in that a
systematic error in estimating the contact orientation leads to
a new equilibrium nearby the original system pose.

While our tactile measurements were accurate on test data
(to within 0.5◦), systematic measurement errors could occur
on objects that are distinct from the planar surface used in
training, such as for very curved or soft regions of the object.
That objects of these types (a squidgy brain and lemon)
were stably grasped indicates the method’s robustness. The
control also appeared to be robust to other sources of error.
In particular, the theoretical analysis of the system was based
on the assumptions that the fingertips and objects are rigid
and that the mass of the object is negligible. However, the

controller performed well with soft, curved tactile fingertips
and the objects ranged in softness, curvature and weight.

The controller’s performance depends, however, on the
assumption of rolling fingertips. In practice, this means that
the friction at each contact is such that the contact force
remains in the friction cone during the grasp so that there is
no slippage in the fingertip-object contact and hence rolling
is possible. The value of fd as well as soft contacts by the
deformable fingertips play a role in satisfying this constraint.
If a non-satisfaction of assumptions causes slippage, then
the grasp will fail (e.g. a heavy object, persistent external
perturbation or −−→c1c2 outside of the friction cones at the
contacts).

Finally, although the scope of the present work was stable
pinch grasping, we would like to emphasise that the controller
should extend to a broader range of capabilities, including
stable in-hand manipulation of unknown objects using touch.
By introducing additional control parameters in the rolling
angles φ and ψ of (5), the rolling of the fingertips on the
contact surface can be controlled to manipulate the object’s
in-hand orientation. In consequence, the controller could be
used to adjust the hand-object composite to the environment’s
geometry; for example, to place an object inside a constrained
space. It could also be used to adjust the internal force to
ensure the safety of the grasp by increasing the grasping
force in case of slippage [29]. These topics will be examined
in future work, along with extending the controller to use
multiple fingers of the robot hand.

APPENDIX: SYSTEM EQUILIBRIUM AND STABILITY
ANALYSIS

Substituting (4) into (2), the closed loop system can be
written as:

Miq̈i + (Ci +Kvi)q̇i + JTωi
KsiQsωreli +DT

ii∆fi

+ATii

[
∆λxi

∆λyi

]
+ rJTωi

∆Ni = 0, (6)

Mop̈o −
2∑
i=1

(nzi∆fi + txi∆λxi + tyi∆λyi) = 0, (7)

Ioω̇o +
2∑
i=1

ˆpoci
T (nzi∆fi + txi

∆λxi
+ tyi∆λyi)

−
2∑
i=1

KsiQsωreli + SN = 0, (8)

where ∆fi = fi − (−1)i+1fdn
T
zi

−−→
t1t2, ∆λxi

= λxi
−

(−1)i+1fdt
T
xi

−−→
t1t2, ∆λyi = λyi−(−1)i+1fdt

T
yi

−−→
t1t2, ∆Ni =

(−1)i+1fd(tyit
T
xi
− txi

tTyi)
−−→
t1t2 + fd

[
(−1)i+1txi

sinψ −
tyi sinφ

]
and SN = fd(p̂

T
oc1 − p̂

T
oc2)
−−→
t1t2.

By setting velocities and accelerations to zero in (6-8),
the system equilibrium is derived. This leads to: ∆fi∞ =
∆λyi∞ = ∆λzi∞ = ∆Ni∞ = SN∞ = 0, which then gives:(

p̂Toc2∞ − p̂
T
oc1∞

)−−→
t1t2∞ = 0, (9)

ψ1∞ − ψ2∞ = βψ∞, φ2∞ − φ1∞ = βφ∞, (10)
with sinβψ∞= tTyi∞

−−→
t1t2∞, sinβφ∞= (−1)i+1tTxi∞

−−→
t1t2∞,

and the subscript ∞ denoting equilibrium values.
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Notice that poc2 − poc1 = −−→c1c2 is the interaction line
vector; hence (9) indicates a zero outer product of −−→c1c2 with−−→
t1t2, which implies that these lines are parallel to each other
at equilibrium. Notice also that ∆fi∞ = ∆λyi∞ = ∆λzi∞ =
0 satisfy the object’s translational motion equation (7) at
equilibrium. The physical meaning is that at equilibrium,
since

−−→
t1t2||−−→c1c2 are parallel, the contact forces are applied

on the interaction line and have magnitude fd.
We compact the closed loop system equation by collecting

all Lagrange multipliers in the vector λ = [f1 f2 λ
T
1 λ

T
2 ]T

and all system position variables in x = [qT1 qT2 pTo ω
T
o ]T :

Msẍ+(Cs +Kv)ẋ+Aλ+BJωQωrel+fdJv
T pt2 − pt1
‖pt2 − pt1‖

+ rfdJω
T

 tx1 sinψ − ty1 sinφ
−tx2

sinψ − ty2 sinφ
06×1

 = 0, (11)

with Ms = diag (M1,M2,M), Cs = diag (C1, C2, 06×6),
Kv = diag (Kv1 ,Kv2 , 06×6), Jv =

[
−Jv1 Jv2 03×6

]
,

Jω =
[
Jω1 Jω2 03×6

]
, Q = diag [Ks1Qs,Ks2Qs],

ωrel =
[
ωTrel1 ωTrel2

]T
, A =

[
D11

T 0n1×1 A11
T 0n1×2

0n2×1 D22
T 0n2×2 A22

T

D13
T D23

T A13
T A23

T

]
,

BJω =

 JT
ω1

05×3

04×3 JT
ω2

03×3 03×3

−I3 −I3

. The constraints can also be written as:

AT ẋ = 0. Left-multiplying (11) by ẋT yields
dV

dt
+W = 0,

where:

V =
1

2
ẋTMsẋ + fd‖pt2 − pt1‖+ rfd

(
z1(t) + z2(t)

)
,

W =

n1∑
j=1

kv1j q̇
2
1j +

n2∑
j=1

kv2j q̇
2
2j +

2∑
i=1

ωTreliKsiQsωreli ,

where z1(t) =
∫ φ
0

sin ξ1dξ1, z2(t) =
∫ ψ
0

sin ξ2dξ2 and kvij
are the diagonal elements of the matrix Kvi . Clearly V is
positive definite with respect to ẋ, ‖pt2 − pt1‖, z1(t) and
z2(t) for −π2 < φ < π

2 and −π2 < ψ < π
2 in the constraint

manifold defined byMc(x) = {x ∈ Rn1+n2+6 : AT ẋ = 0}.
Given V̇ =−W ≤ 0, it is clear that V (t) ≤ V (0) holds and
consequently ẋ, ‖pt2 − pt1‖, z1(t) and z2(t) are bounded.
Following the proof line in [12], it is proved that the system
velocities and accelerations converge to zero ẋ, ẍ → 0 and
that ẋ converges to zero exponentially as t→∞.
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