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Abstract—This paper is concerned with the design of a
state feedback control scheme for variable stiffness actuated
(VSA) robots, which guarantees prescribed performance of the
tracking errors despite the low range of mechanical stiffness.
The controller does not assume knowledge of the actual system
dynamics nor it utilizes approximating structures (e.g., neural
networks, fuzzy systems) to acquire such knowledge, leading
to a low complexity design. Simulation studies, incorporating
a model validated on data from an actual VSA at a multi-
dof robot, are performed. Comparison with a gain scheduling
solution reveals the superiority of the proposed scheme with
respect to performance and robustness.

I. INTRODUCTION

THE introduction of robots in human everyday activities
for service and assistance at both home and work, has

motivated a series of new developments seeking to address the
issues of safety and performance, in human-robot co-existence.

An approach to resolve concurrently safety and performance
issues is via the design and development of variable stiffness
actuators (VSA), which introduce a mechanical compliance in
the joint actuation that can be altered via control action [1]–
[7]. The greater complexity of the mechanical designs and the
coupling of actuators responsible for adjusting simultaneously
joint position and stiffness has introduced serious technical
issues related to controller design. Initial attempts have con-
centrated in feedback linearization solutions that require exten-
sive model knowledge or identification to achieve satisfactory
operation [8]–[13]. Impedance and damping control for this
type of robots has also been investigated [13], [14]. Recently,
gain scheduling strategies have been proposed for achieving
robustness to stiffness parameter variations of VSA of the
antagonistic or series type [12], [15], leaving however open
the problem of extending their control designs to multi dof
robots.

To our knowledge, all current control approaches assume a
given task-related desired stiffness profile that reflects damage
or injury risk assessment in the event of collision; for example,
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higher velocities are typically associated with low stiffness
profiles so that in case of impact, the risk of damage or human
injuries is reduced [16]. At the same time, low stiffness is
reported to yield large tracking errors, which in turn may also
be the source of collisions in an uncertain and dynamic en-
vironment [15]. Moreover, by increasing mechanical stiffness,
performance is not necessarily guaranteed.

In this work, prescribed performance of the tracking error
in the presence of low joint stiffness is achieved, via the
utilization of a controller developed for a variable stiffness
joint of a series type [17] that is here extended to the multi
dof case. It is assumed that in case of impact, a practical
remedy could be the prescribed performance controller to
be deactivated, leaving the robot under the control of online
gravity compensation with joint damping. It is stressed that
prescribed performance is achieved without incorporating the
actual robot-motor dynamics and without depending on ap-
proximating structures (e.g., neural networks, fuzzy systems)
to acquire such knowledge, thus resulting in a low complexity
control design. Simulation results for a multi dof robot, incor-
porating the recently developed model [3] that was validated
on data obtained from an actual VSA joint, are included.
We move forward and conduct simulations comparing our
approach to the gain scheduling solution [15].

The paper is organised as follows: in Section II the main
problem addressed is stated, while in Section III the proposed
controller is presented. Simulation studies, including compar-
isons, are conducted in Section IV. Finally, we conclude in
Section V. In Appendix A preliminaries on the Prescribed Per-
formance Control methodology is provided, while Appendix
B contains technical details related to the stability analysis of
the proposed control scheme.

II. PROBLEM DESCRIPTION

Let us consider a n−link flexible joint robot with variable
stiffness actuators (VSA) consisting of two modules, the
stiffness actuator module which regulates the stiffness and
the position actuator module which regulates the joint’s link
position. A reduced model of the aforementioned system can
be expressed as follows [3], [15]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = K(θk)(θ − q) (1)
Jθ θ̈ +Bθ θ̇ +K(θk)(θ − q) = τm (2)
Jkθ̈k +Bkθ̇k + F (θ, q, θk) = τk (3)

where q ∈ Rn are the link angles, θ ∈ Rn are the link motor
angular positions, θk ∈ Rn are the stiffness motor angular
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Fig. 2. The proposed control scheme.

positions, while q̇, θ̇, θ̇k ∈ Rn are the respective velocities.
Moreover, M(q) ∈ Rn×n is the link side inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis/centrifugal matrix, G(q) ∈ Rn
is the gravity vector, Jθ, Jk ∈ Rn×n are the two motor
diagonal, positive definite inertia matrices and Bθ, Bk ∈ Rn×n
are the motor damping matrices, including both the physical
damping and back emf damping of the motors. Moreover,
K(θk) ∈ Rn×n is a diagonal joint stiffness matrix with entries
Ki(θki), i = 1, . . . , n and F (θ, k, θk) ∈ Rn is a vector with
nonlinear entries Fi(θi, qi, θki), i = 1, . . . , n, representing the
reaction torques produced by the deflection of the elastic trans-
mission that act against the motor adjusting the stiffness. A
schematic of the actuator model and operation principle of one
joint is shown in Fig. 1. The entries Ki(θki), i = 1, . . . , n of

Fig. 1. Schematic of the actuator model and operation principle.

the joint stiffness matrix K(θk) are strictly positive, bounded,
continuous functions of θk, that are not necessarily equal. It
is considered

Ki(θki) ≥ ki > 0,∀t ≥ 0, i = 1, . . . , n (4)

where ki possibly small constants. This is imposed by con-
struction and low level firmware limits [3] and is required to
establish a well-defined joint stiffness representation as well as
a controllable VSA model (1)-(3). Finally, assuming ideal mo-
tor transmissions with negligible internal losses, τm, τk ∈ Rn

are the motor torques after the reduction drives which are given
by τm = Kθum, τk = Kkuk where um, uk are the input
voltages vectors and Kθ, Kk are positive definite constant
diagonal matrices.

Following its definition, the joint stiffness matrix K(θk) can
be decomposed, without losing generality, as

K(θk) = KM (θk) I + ∆K(θk) (5)

where KM (θk) > 0 is an unknown, continuous and bounded
function of θk, defined as

KM (θk) = max
i
{Ki(θk)} , i = 1, . . . , n, (6)

I is the n × n identity matrix and ∆K(θk) is an unknown
though bounded n × n diagonal matrix. The matrix ∆K(θk)
introduces the required diversity in the elements of K(θk).
The special case where ∆K(θk) = 0,∀θk > 0 applies to a
manipulator possessing identical joint stiffnesses.

For the VSA system (1)-(4), the state x = (q, q̇, θ, θ̇, θk,
θ̇k), is assumed to be available for measurement, while its
dynamics is assumed to be unknown.

Our goal is to design a state feedback controller to control
the outputs q, θk ∈ Rn of the flexible joint robot with
variable stiffness joints to track a given, C1 and bounded
reference trajectory qd(t) ∈ Rn, θkd(t) ∈ Rn respectively,
with prescribed performance. This means that the output error
should be guaranteed to converge to a predefined arbitrarily
small residual set, with rate less than a prespecified value,
exhibiting maximum overshoot less than a sufficiently small
preassigned constant. Moreover, all other closed loop signals
should be kept bounded. The above task shall be referred to
as the Prescribed Performance Control for a Variable Stiffness
Actuator Robot (PPC/VSA) problem.

III. CONTROLLER DESIGN

Let us define εj , j ∈ {q, vq, θ, vθ, θk, vk} as

εj =

[
Tj1

(
ej1
ρj1

)
. . . Tjn

(
ejn
ρjn

)]T
∈ Rn, (7)
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with eq = q − qd ∈ Rn, eθk = θk − θkd ∈ Rn, evq = q̇ − vq ∈
Rn, eθ = θ−θr ∈ Rn, evθ = θ̇−vθ ∈ Rn, evk = θ̇k−vθk ∈ Rn
and ρji, j ∈ {q, vq, θ, vθ, θk, vk}, i = 1, . . . , n are perfor-
mance functions defined in the Prescribed Performance Pre-
liminaries provided in Appendix A. Moreover, vq, θr, vθ, vθk
are intermediate control signals and

Ψj = diag

 1

ρji

∂Tji

∂
(
eji
ρji

)
 ∈ Rn×n, (8)

j ∈ {q, vq, θ, vθ, θk, vk}, i = 1, . . . , n. Notice that Ψj > 0. In
the derivation of (8) any transformation function Tji satisfying
the properties stated in the Prescribed Performance Preliminar-
ies provided in Appendix A can be utilized, as for example
(19). A solution to the considered problem, is provided by

um(t) = −κvθ
(
Ψvθ + Ψ−1

vθ

)
εvθ (9)

vθ(t) = −κθ
(
Ψθ + Ψ−1

θ

)
εθ (10)

θr(t) = −κvqΨvqεvq (11)

vq(t) = −κq
(
Ψq + Ψ−1

q

)
εq (12)

uk(t) = −κvk
(
Ψvk + Ψ−1

vk

)
εvk (13)

vθk(t) = −κθk
(
Ψθk + Ψ−1

θk

)
εθk (14)

where, in (9)-(14), κj , j ∈ {q, vq, θ, vθ, θk, vk} are positive
control gains. Fig. 2 illustrates the proposed control scheme.
The following theorem summarizes the main results of the
paper.

Theorem 1: Consider a n-link flexible joint robot with
variable stiffness actuators (1)-(4) and desired bounded and
C1 tracking trajectories qd(t), θkd(t). Further, consider a set
of performance functions ρji(t), j ∈ {q, vq, θ, vθ, θk, vk}, i =
1, . . . , n and constants Mji satisfying 0 ≤ Mji ≤ 1, j ∈
{q, vq, θ, vθ, θk, vk}, i = 1, . . . , n which incorporate desired
performance characteristics on the corresponding errors eji(t),
j ∈ {q, vq, θ, vθ, θk, vk}, i = 1, . . . , n. The prescribed perfor-
mance controller (7)-(14) with transformation functions

Tji

(
eji (t)

ρji (t)

)
=


aji ln

(
Mji+

eji(t)

ρji(t)

1−
eji(t)

ρji(t)

)
,in case eji (0) ≥ 0

aji ln

(
1+

eji(t)

ρji(t)

Mji−
eji(t)

ρji(t)

)
,in case eji (0) ≤ 0

where aji > 0, j ∈ {q, vq, θ, vθ, θk, vk}, i = 1, . . . , n, κj ,
j ∈ {q, vq, θ, vθ, θk, vk} positive design constants and

|eji(0)| < ρji(0) , if eji(0) 6= 0

Mji 6= 0 , if eji(0) = 0

with j ∈ {q, vq, θ, vθ, θk, vk}, i = 1, . . . , n solves the
PPC/VSA problem.

Proof. For completeness and compactness of presentation,
the proof of Theorem 1, which is strongly influenced by [18],
is provided in Appendix B. �

The proposed controller achieves prescribed performance
requirements for the system output error (eq, eθk ) regarding
the maximum steady state error, the minimum speed of
convergence as well as the maximum overshoot using state
feedback and without requesting any knowledge of the system

nonlinearities. Furthermore, neither adaptive techniques nor
approximating structures i.e., neural fuzzy systems etc., are
utilized to acquire such knowledge or compensate for its
absence. Thus, the controller summarized in Theorem 1 is the
simplest architecture reported in the relevant literature capable
of succeeding such a demanding task for a multi-dof variable
stiffness actuator robot.

It is noted however that the proposed controller does not
guarantee the quality of output error evolution inside the
performance envelope1 defined by the output performance
functions ρqi(t), ρθki(t), i = 1, . . . , n and constants Mqi,
Mθki, i = 1, . . . , n. Nevertheless, extensive simulation studies
revealed that the selection of the remaining control elements
i.e., ρji(t),Mji, kj , Tji, j ∈ {vq, θ, vθ, vk}, i = 1, . . . , n
can have positive influence. Therefore, the selection of the
aforementioned elements should be performed in the direction
of establishing smooth output tracking error evolution with
reasonable control effort in terms of magnitude and slew rate.
It is stressed, however, that currently no universal procedure
exists to achieve such a parameter tuning, with the latter being
heavily dependent on the application.

Perhaps the strongest limitation of applying the Prescribed
Performance Control methodology to a real robot is related
to the actuator specifications with respect to the intended pre-
scribed performance of the closed-loop system. As all actuator
systems, depending on their construction, are characterized
by a maximum delivered torque and a maximum speed of
response (bandwidth), it is important to prescribe a closed-
loop system performance that for a given control parameters
selection can be realized by those actuators. In the opposite
case, it is possible that the demanded torque is saturated or
delivered in a slower rate than required, causing the perfor-
mance of the closed-loop system to deteriorate and even to
jeopardize stability. It is understood that further research is
required in this direction to provide a theoretically justified,
viable solution. Fortunately, the feasibility of the aforemen-
tioned endeavour is supported by recently reported works
that include implementations of the Prescribed Performance
Control methodology to visual servoing [19], control of rigid
robots [20]–[24], control of underwater vehicles [25], [26] and
control of aerial vehicles [27].

IV. SIMULATION STUDIES

To demonstrate the attributes of the proposed prescribed
performance control scheme, a number of simulation studies
have been conducted. Specifically, a 3 d.o.f. spatial robotic
manipulator with variable stiffness actuators is first considered
to verify and clarify the operation of the developed controller.
Finally, we proceed further and in Subsection IV-B compara-
tive simulations are presented with a gain scheduling controller
that was recently reported to control single-link VSA robots
of the class considered in this work. The performed simu-
lations employ the proposed controller in continuous-time,
as designed in Section III, without utilizing a discretization
algorithm. The latter also holds true for the aforementioned
gain scheduling controller.

1For an illustration of the performance envelope see Fig. 15 of Appendix
A
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Fig. 3. The 3 d.o.f. spatial robotic manipulator.

A. Simulation study of a 3 d.o.f. VSA robotic manipulator

A 3 d.o.f. spatial robotic manipulator (Fig. 3) is considered
with link masses m1 = m2 = m3 = 1 kg, link lengths l2 =
l3 = 0.5 m and inertias Iz1 = Ix2 = Ix3 = 4.15 ·10−4 kgm2,
Iy2 = Iz2 = 0.021 kgm2 and Iy3 = Iz3 = 0.0039 kgm2.
At each joint, the actual compact variable stiffness actuator
[3], [17] is used. Its mathematical description is governed by
(2), (3) with joint stiffness matrix entries Ki(θki) and reaction
torque entries Fi(θi, qi, θki) given as follows:

Ki(θki) = KE1
θ2ki

(∆−n1θki)2
, i = 1, 2, 3

Fi(θi, qi, θki) = KR1
θki(θi−qi)2
(∆−n1θki)3

, i = 1, 2, 3

where KE1 = 1.62×10−4 N/m3, KR1 = 2.43×10−6 Nm4,
∆ = 0.015 m, n1 = 0.006 m/rad are construction specific
mechanical constants. Also, Jθ = 0.0575 kgm2, Jk = 0.0062
kgm2, Bθ = 7.7781 Nms/rad, Bk = 0.5262 Nms/rad,
Kθ = 1.4139 Nm/V and Kk = 0.6014 Nm/V .

The state vector is xi =
[
qi q̇i θi θ̇i θki θ̇ki

]
, i = 1, 2, 3.

Our purpose is to force the output q ∈ R3 to track a smooth,
bounded, third degree desired polynomial trajectory qd(t) =

q(0) +
(
q(tf )− q(0)

)( 6

t5f
t5 − 15

t4f
t4 +

10

t3f
t3
)

reaching a final

desired position q(tf ) at time tf , while the actuators’ stiffness
is desired to decrease exponentially at a rate of e−1.8t.

For the output errors eq(t) we require a steady state of
no more than 0.01rad and minimum speed of convergence
as obtained by the exponential e−5t whereas for the output
errors eθk(t) the requirements are 0.01rad and e−30t respec-
tively. Note that the aforementioned specifications have been
selected to guarantee that the stiffness motor angle θk(t)
reaches its steady state well before the link velocity reaches its
maximum value, implying that the stiffness dynamics evolve
faster than the link dynamics; thus making the control task
even more challenging. As the theoretical analysis dictates,
the performance requirements for the rest of the states don’t
need to be as strict. The aforementioned transient and steady
state error bounds are prescribed by setting the parameters
Mji appearing in Theorem 1 to unity and using exponential
performance functions as defined in (16) (see Appendix A) for
all joints. The remaining parameters are provided in Table I.

Furthermore, the output and state error transformations are
chosen as in (19). The closed loop system was simulated
using the control design constants given in Table II. The
determination of the aforementioned control parameter values
is a serious task that is strongly related to the quality of the
closed loop system. Its rigorous solution resides in solving a
nonlinear, typically non-convex, multi-objective optimization
problem. Traditionally, engineering experience is utilized to
provide a heuristic, though practical and typically far from
being optimal, solution. As the output error performance
bounds are solely determined by performance specifications in
the proposed controller, the selection of the controller design
constants is made by adopting those values that lead to smooth
error evolutions within the respective performance envelopes
and to reasonable control efforts with respect to magnitude
and slew rate. Besides engineering experience, which is used
to provide an initial good guess, gain tuning is achieved herein
with the aid of a software tool, developed in our laboratory,
which performs the necessary multi-objective optimization via
a genetic algorithm approach. The results obtained are sub-
optimal, yet of sufficient quality.

TABLE I
PRESCRIBED PERFORMANCE FUNCTION PARAMETERS FOR THE

MULTI-DOF CASE

Joint 1 Joint 2 Joint 3
ρ0 ρ∞ l ρ0 ρ∞ l ρ0 ρ∞ l

eq 4 0.01 5 4 0.01 5 4 0.01 5
evq 15.5 8.1 0.1 5.7 4.2 15.4 16.7 12 3.4
eθ 16.8 10.3 5.4 31 30 0.6 20 14.2 14.7
evθ 12.5 0.9 14.7 8.3 2.4 6.8 7.2 4.4 13.2
eθκ 10 0.01 30 10 0.01 30 10 0.01 30
evκ 18.3 8.6 0.1 18 12.8 15.8 15.7 6.3 0.62

TABLE II
CONTROL DESIGN CONSTANTS FOR THE MULTI-DOF CASE

j κj αj1 αj2 αj3
q 0.2 0.3 0.06 0.72
vq 1.5 2.67 9.18 2.27
θ 0.3 1.9 2.95 3.2
vθ 0.4 3.35 3.2 9.5
θκ 0.4 0.25 0.2 0.15
vκ 45 0.8 2.7 0.4

We initialize at θki = 2.175 rad, q1 = q3 = 0 rad, q2 =
1.5708 rad while having zero velocities and deflections (θi−
qi, i = 1, 2, 3). The final desired link position is q(tf ) =
[−1.12 0.4508 1.12]T (rad) with tf = 6 sec.

The simulation results are depicted in Figs. 4-9. Specifically,
Figs. 4-6 show the link, motor angles and velocities evolution.
The stiffness evolution of all joints is pictured in Fig. 7 which
starts from a value of 200 Nm/rad decreasing to a value of
100 Nm/rad. Apparently, the output errors clearly satisfy the
prescribed performance specifications as illustrated in Fig. 8.
It is stressed that their magnitude at steady state is 10−3 and
10−7 for eq(t) and eθk(t) respectively. Finally, the requested
control effort (input torques) is illustrated in Fig. 9. Clearly,
the control effort is reasonable for such a demanding control
task.

The aforementioned simulations were conducted assuming
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Fig. 4. Time evolution of the link, motor angles and velocities for the first
joint alongside their references (dashed lines).
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Fig. 5. Time evolution of the link, motor angles and velocities for the second
joint alongside their references (dashed lines).

ideal motor transmissions with negligible internal losses. To
investigate the robustness of the proposed control scheme with
respect to the utilization of non ideal transmissions, losses are
introduced in the motors’ transmissions during the simulation.
Specifically, it is assumed 30% loss in the transmission of the
stiffness’s motor of the second joint at t = 2.5 sec which
increases to 40% loss at t = 6 sec. Furthermore, at t = 5
sec, 40% loss is introduced in the transmission of the link’s
motor of the first joint and 30% loss in the transmission
of the link’s motor of the third joint. Fig. 10 illustrates the
demanded control efforts, where it is clear that the motors
fast compensate (see subplots in Fig. 10) for the transmission
losses. This disturbance however, is not reflected in the actual
system outputs qi, θki, i = 1, 2, 3 which remain practically
unaltered, and is as pictured in Figs. 4-6.
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Fig. 6. Time evolution of the link, motor angles and velocities for the third
joint alongside their references (dashed lines).
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Fig. 7. Time evolution of the joints stiffness.

B. Comparison studies

In this subsection comparative studies are presented, in
terms of tracking performance and robustness to external
perturbations, with a gain scheduling controller that was re-
cently reported in [15], to control single link variable stiffness
actuated robots of the class considered in this work.

To model the variable stiffness actuator in our simulation
study, we have employed the AwAS model [15] which is
described by (2), (3) with joint stiffness K(θk) and reaction
torque F (θ, q, θk) given by:

K(θk) = KE2(ro − n2θk)2,

F (θ, q, θk) = −KR2(ro − n2, θk)(θ − q)2

where KE2 = 160000 N/m, KR2 = 63.662 N/rad, ro = 0.1
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Fig. 8. Output errors (solid lines) with respect to performance envelopes
(dashed lines).
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Fig. 9. The requested control efforts in case of ideal motor transmissions.

m, n2 = 3.98×10−4 m/rad are construction specific mechan-
ical constants. Also, Jθ = 0.0575 kgm2, Jk = 6.8294× 10−5

kgm2, Bθ = 10.2763 Nms/rad, Bk = 0.014 Nms/rad,
Kθ = 1.4139 Nm/V and Kk = 0.0227 Nm/V .

According to [15], the original non-linear system was firstly
approximated by a parametrized, in terms of the actuator
stiffness, linear system, essentially constituting a set of linear
time-invariant (LTI) systems. Subsequently, linear quadratic
regulators (LQR) were designed for the LTIs and ultimately
the gains of the LQRs undergo a polynomial fitting producing
a gain scheduling controller. For the stiffness actuator, a PID
controller was used. Following [15] PID gains are tuned for
the linear part of the stiffness actuator model (equation (3)
setting F (θ, q, θk) = 0). Speed of response for the stiffness
actuator is shown to be faster than that of the link in [15].
Thus, in our case, we have found that for a constant stiffness
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Fig. 10. The requested control efforts in case of losses in the transmissions.

in the range of [100, 1260] Nm/rad, the link’s settling time
ranges approximately from 0.4 sec for 100 Nm/rad to 0.09 sec
for 1260 Nm/rad. Hence, the faster response of the stiffness
actuator is fulfilled for all stiffness values by requiring 0.05
sec settling time. Furthermore, the overshoot is specified less
than 15% and the disturbance rejection less than −40 dB at
frequencies less than 25 rad/sec. These requirements lead to
PID gains KP = 202,KI = 808,KD = 0.3.

For the prescribed performance controller, it is required a
steady state of no more than 0.01rad for the output errors
eq(t) and eθk(t) and minimum speed of convergence as
obtained by the exponential e−8t and e−9t respectively. The
aforementioned transient and steady state error bounds are pre-
scribed by setting the parameters Mji appearing in Theorem
1 to unity and using exponential performance functions as
defined in (16) (see Appendix A). The remaining parameters
are provided in Table III. Furthermore, the output and state
error transformations were chosen as in (19). The closed loop
system was simulated using control design constants given in
Table IV, determined by following the procedure discussed in
the 3-dof case.

TABLE III
PRESCRIBED PERFORMANCE FUNCTION PARAMETERS FOR THE ONE JOINT

CASE

ρ0 ρ∞ l
eq 5 0.01 8
evq 5.8 5.2 11.8
eθ 2.2 0.25 8.2
evθ 6 3.5 14.4
eθκ 1 0.01 30
evκ 2.3 0.4 11.5

Tracking performance: In the first set of comparisons, our
purpose is to force the outputs q, θk to track the smooth,
bounded trajectories qd(t) = 0.19 + 0.19 sin(3πt − π/2) and
θkd(t) = 251.33 − 6.28

√
Kd(t), where Kd(t) = 680 +

580 sin(0.2πt + π/3) is a desired stiffness trajectory ranging
between the values of 99.85 and 1260 Nm/rad.

Notice that actuator stiffness is not available for measure-
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TABLE IV
CONTROL DESIGN CONSTANTS FOR THE ONE JOINT CASE

j κj αj
q 10.6 0.05
vq 0.11 0.75
θ 3.3 4.5
vθ 13.3 2
θκ 15 0.35
vκ 0.2 2

ment and in that respect it is not incorporated in the control
design. However, to guarantee fair comparison, the reference
trajectory for the stiffness motor is produced by inverting the
elastic torque model given in [15], for a desired joint stiffness
trajectory, following current state of the art practices. In reality,
actual joint stiffness may have diversions from the desired
stiffness trajectory owing to modeling imperfections.

We set
[
q(0) q̇(0) θ(0) θ̇(0) θk(0) θ̇k(0)

]T
=

[0 0 0 0 35.28 0]T rad. The initial value of θk corresponds
to a stiffness value of 1182.3 Nm/rad.

Fig. 11(a) depicts the link position error using the proposed
prescribed performance controller and the one reported in
[15]. It is clear that the prescribed performance controller
guarantees the preselected output error despite the change of
the stiffness value (Fig. 11(b)). The maximum error reported
for the proposed prescribed performance controller is ≈ 0.2o

(0.003525 rad). However, for the controller [15] the same
quantity appears significantly higher (≈ 8o (0.1379 rad)). The
corresponding displacement for a link length 0.5 m yields 0.18
cm and 6.89 cm for the prescribed performance controller
and the controller [15] respectively. For both cases, all the
remaining closed loop signals are practically identical (e.g. the
control efforts shown in Fig. 12) and thus are not presented
in this study.

Robustness to external perturbations: We will now inves-
tigate the robustness of the two controllers to an external
disturbance on the link. The disturbance d(t) is introduced
as three pulses of increasing magnitude and duration of 2
sec each, as shown in Fig. 13. Our purpose is to force the
output q to track the smooth, bounded trajectory qd(t) =
0.0975+0.0975 tanh(10(t−0.8)) while the actuator stiffness
is kept at 100 Nm/rad, which represents a low stiffness value.

Fig. 14 shows the link position error and the control input
for both the proposed prescribed performance controller (red
line) and the controller presented in [15] (black line), when
the disturbance is present (solid line) as well as absent (dashed
line). The detail in Fig. 14 shows the output error for the
prescribed performance controller in the presence of external
disturbances (solid line) as well as without them (dashed
line). The robustness of the prescribed performance controller
is apparent since the output error continues to comply to
the prescribed performance specifications despite the external
disturbance, whereas in the case of controller [15] the presence
of the disturbance is clearly reflected in the output error.
Interestingly, both behaviours are achieved while demanding
almost identical control efforts.

0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [sec]

q d
(t
)
−
q(
t)

[r
a
d
]

(a)

0 2 4 6 8 10

200

400

600

800

1000

1200

time [sec]

K
(t
)
[N

m
/
ra

d]

(b)

Fig. 11. (a) Link position error with the proposed controller (solid line) and
the controller [15] (dashed line), (b) Evolution of the joint stiffness.
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Fig. 12. The requested control effort with the proposed controller (solid line)
and the controller [15] (dashed line).

V. CONCLUSION

A low complexity state feedback controller for variable
stiffness actuated robots is presented achieving prescribed
performance of the joint tracking and increased robustness
to external perturbation outperforming the current state of
the art control approaches particularly in low stiffness values.
Extensive simulation studies incorporating actual VSA models
highlight the aforementioned control attributes.

APPENDIX A
PRESCRIBED PERFORMANCE PRELIMINARIES

It will be clearly demonstrated in Appendix B that the
control design is based on the prescribed performance con-
trol (PPC) methodology, which was pioneered in [28] and
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Fig. 13. External disturbance to the link.

utilized in [29]–[31] to design controllers capable of a priori
guaranteeing prescribed performance bounds on the transient
and steady state output error for a range of nonlinear system
classes. Seeking a complete and self contained presentation,
Appendix A summarizes preliminary knowledge on the con-
cept of prescribed performance.

In that respect, consider a generic tracking error e (t) =[
e1(t) . . . em(t)

]T ∈ Rm. Prescribed performance is
achieved if each element ei (t) , i = 1, . . . ,m evolves strictly
within a predefined region that is bounded by a decaying
function of time. The mathematical expression of prescribed
performance is given, ∀t ≥ 0, by the following inequalities:

−Miρi (t) < ei (t) < ρi (t) , ei (0) ≥ 0
−ρi (t) < ei (t) < Miρi (t) , ei (0) ≤ 0

}
(15)

i = 1, . . . ,m, where 0 ≤ Mi ≤ 1, i = 1, . . . ,m and
ρi : R≥0 → R>0, i = 1, . . . ,m is a function of time
that is bounded away from zero by a constant c > 0 and
has a piecewise continuous and bounded derivative called
performance function [28]. As (15) implies, only one set
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Fig. 14. Output error and control input for the prescribed performance
controller (red line) and the controller [15] (black line). The dashed line
corresponds to system response in the absence of external disturbance, while
the solid line is the system response in the presence of external disturbances.
The detail shows the output error for the prescribed performance controller.

of the performance bounds is employed and specifically the
one associated with the sign of ei (0). The aforementioned
statements are clearly illustrated in Fig. 15a, for an exponential
performance function

ρi (t) = (ρi0 − ρi∞) exp (−lit) + ρi∞, i = 1, . . . ,m, (16)

with ρi0, ρi∞, li, i = 1, . . . ,m strictly positive constants. The
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constant ρi0 = ρi(0), i = 1, . . . ,m is selected such that (15)
is satisfied at t = 0 (i.e., ρi (0) > ei (0) in case ei (0) ≥ 0
or ρi (0) > −ei (0) in case ei (0) ≤ 0). The constant ρi∞ =
limt→∞ ρi (t) , i = 1, . . . ,m represents the maximum allow-
able size of ei (t) at the steady state that can be set arbitrarily
small to a value reflecting the resolution of the measurement
device, thus achieving practical convergence of ei (t) to zero.
Furthermore, the decreasing rate of ρi (t) , i = 1, . . . ,m,
which is related to the constant li, i = 1, . . . ,m in this case,
introduces a lower bound on the required speed of convergence
of ei (t). Moreover, the maximum overshoot is prescribed less
than Miρi (0) , i = 1, . . . ,m, which may even become zero by
setting Mi = 0, i = 1, . . . ,m. Thus, the appropriate selection
of the performance function ρi (t) , i = 1, . . . ,m, as well as of
the constant Mi, i = 1, . . . ,m, imposes performance bounds
for the tracking error ei (t) , i = 1, . . . ,m.

To introduce prescribed performance, an error transforma-
tion is incorporated modulating the tracking error element
ei (t) , i = 1, . . . ,m with respect to the required performance
bounds imposed by ρi (t), Mi, i = 1, . . . ,m. More specifi-
cally, we define:

εi (t) = Ti

(
ei (t)

ρi (t)

)
, i = 1, . . . ,m (17)

where εi (t) , i = 1, . . . ,m is the transformed error and
Ti (·) , i = 1, . . . ,m is a C2 strictly increasing function
defining a bijective mapping:

Ti : (−Mi, 1)→ (−∞,∞) , ei (0) ≥ 0
Ti : (−1,Mi)→ (−∞,∞) , ei (0) ≤ 0

}
(18)

i = 1, . . . ,m. A candidate transformation function, illustrated
in Fig 15b, could be

Ti

(
ei (t)

ρi (t)

)
=


ai ln

(
Mi+

ei(t)

ρi(t)

1− ei(t)
ρi(t)

)
, in case ei (0) ≥ 0

ai ln

(
1+

ei(t)

ρi(t)

Mi−
ei(t)

ρi(t)

)
, in case ei (0) ≤ 0

(19)
i = 1, . . . ,m, where ai are positive design constants. As
(18) implies and the aforementioned example clarifies, the
choice of the mapping Ti (·) , i = 1, . . . ,m, depends only
on the sign of ei (0) , i = 1, . . . ,m. Notice also that since
ρi (0) , i = 1, . . . ,m is selected such that (15) is satisfied
at t = 0, εi (0) , i = 1, . . . ,m is finite owing to (18).
Furthermore, the case of ei (0) = 0 requires selection of
Mi 6= 0, i = 1, . . . ,m, since otherwise (i.e., Mi = 0)
εi (0) , i = 1, . . . ,m becomes infinite.

Owing to the properties of the error transformation, pre-
scribed performance in the sense of (15) is satisfied by keeping
εi(t), i = 1, . . . ,m bounded. Notice that the bounds of
εi (t) , i = 1, . . . ,m do not affect the evolution of ei (t) , i =
1, . . . ,m, which are solely prescribed by (15) and thus by the
selection of the performance functions ρi (t) , i = 1, . . . ,m
as well as the constants Mi, i = 1, . . . ,m.

APPENDIX B
PROOF OF THEOREM 1

We initially formulate the closed loop system dynamics in
the transformed error space. Employing the definitions of the

output and state errors eq, eθk , evq , eθ, evθ , evk , it is obtained

ej=
[
ρj1T

−1
j1 (εj1) . . . ρjnT

−1
jn (εjn)

]T
, (20)

j ∈ {q, θk, vq, θ, vθ, vk}. For compactness of presentation we
shall denote ρjT−1

j (εj) , ej , j ∈ {q, θk, vq, θ, vθ, vk}. Hence,
employing (9)-(14), it is straightforwardly obtained:

q = qd(t) + eq (21)
= qd(t) + ρqT

−1
q (εq) (22)

q̇ = vq(t) + evq (23)

= −κq(Ψq + Ψ−1
q )εq + ρvqT

−1
vq (εvq ) (24)

θ = θr(t) + eθ (25)
= −κvqΨvqεvq + ρθT

−1
θ (εθ) (26)

θ̇ = vθ(t) + evθ (27)
= −κθ(Ψθ + Ψ−1

θ )εθ + ρvθT
−1
vθ

(εvθ ) (28)

θk = θkd(t) + eθk (29)
= θkd(t) + ρθkT

−1
θk

(εθk) (30)

θ̇k = vθk(t) + evk (31)
= −κθk(Ψθk + Ψ−1

θk
)εθk + ρvkT

−1
vk

(εvk). (32)

The link and motor accelerations with respect to the trans-
formed errors are derived as

q̈ = −Zq(εq, εvq , t)−ZEq (εq, εθk , t)(q − θ) (33)

θ̈ = −Zθ(εθ, εvθ , t)−ZEθ (εθk , εθ, εq, εvq , t)
+J−1

θ Kθum (34)

θ̈k = −Zθk(εθk , εvk , t)−Zk(εθk , εθ, εq, εvq , t)

+J−1
k Kkuk (35)

where

Zq(εq, εvq , t) = M−1(q) [C(q, q̇)q̇ +G(q)](36)

ZEq (εq, εθk , t) = M−1(q)K(θk) (37)

Zθ(εθ, εvθ , t) = J−1
θ Bθ θ̇ (38)

ZEθ (εθk , εθ, εq, εvq , t) = J−1
θ K(θk)(θ − q) (39)

Zθk(εθk , εvk , t) = J−1
k Bkθ̇k (40)

Zk(εθk , εθ, εq, εvq , t) = F (θ, q, θk) (41)

In the aforementioned expression, the variables q, q̇, θ, θ̇, θk, θ̇k
are related to εj , j ∈ {q, θk, vq, θ, vθ, vk} and t via (22), (24),
(26), (28), (30), (32).

Differentiating (7) with respect to time and using (8), we
obtain:

ε̇j =


1
ρj1

∂Tj1

∂
(
ej1
ρj1

) (ėj1 − ej1 ρ̇j1ρj1

)
...

1
ρjn

∂Tjn

∂
(
ejn
ρjn

) (ėjn − ejn ρ̇jnρjn)


= Ψj (ėj − νj(εj , t)), j ∈ {q, θk, vq, θ, vθ, vk}(42)

where νj(εj , t) is defined using (20) as follows:

νj(εj , t) =
[
ej1

ρ̇j1
ρj1

. . . ejn
ρ̇jn
ρjn

]T
=

[
ρ̇j1(t)T−1

j1 (εj1) . . . ρ̇jn(t)T−1
jn (εjn)

]T
,
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with j ∈ {q, θk, vq, θ, vθ, vk}. Substituting (20), (21), (23),
(25), (27), (29), (31) in (42) using the error definitions yields:

ε̇q = Ψq (ėq − νq(εq, t))
= Ψq (q̇ − q̇d(t)− νq(εq, t))
= Ψq (vq(t) + ρvqT

−1
vq (εvq )− q̇d(t)− νq(εq, t))

ε̇θk = Ψθk (ėθk − νθk(εθk , t))

= Ψθk (θ̇k − θ̇kd(t)− νθk(εθk , t))

= Ψθk (vθk(t) + ρvkT
−1
vk

(εvk)− θ̇kd(t)− νθk(εθk , t))

ε̇vq = Ψvq (ėvq − νvq (εvq , t))
= Ψvq (q̈ − v̇q(t)− νvq (εvq , t))

ε̇θ = Ψθ (ėθ − νθ(εθ, t))
= Ψθ (θ̇ − θ̇r(t)− νθ(εθ, t))
= Ψθ (vθ(t) + ρvθT

−1
vθ

(εvθ )− θ̇r(t)− νθ(εvθ , t))
ε̇vθ = Ψvθ (ėvθ − νvθ (εvθ , t))

= Ψvθ (θ̈ − v̇θ(t)− νvθ (εvθ , t))
ε̇vk = Ψvk (ėvk − νvk(εvk , t))

= Ψvk (θ̈k − v̇θk(t)− νvk(εvk , t))

Finally, substituting the controller (9) - (14) and the system
dynamics (33) - (35) the closed loop dynamics in the trans-
formed error space can be written as follows:

ε̇q = −κqεq − κqΨ2
qεq −Ψq (q̇d(t) + νq(εq, t))

+ΨqρvqT
−1
vq (εvq ) (43)

ε̇θk = −κθkεθk − κθkΨ2
θk
εθk

−Ψθk

(
θ̇kd(t) + νθk(εθk , t)

)
+ΨθkρvkT

−1
vk

(εvk) (44)
ε̇vq = −ΨvqZEq (εq, εθk , t)κvqΨvqεvq

+Ψvq

{
−Zq(εq, εvq , t)− v̇q − νvq (εvq , t) −
− ZEq (εq, εθk , t)

(
qd + ρqT

−1
q (εq)

−ρθT−1
θ (εθ)

)}
(45)

ε̇θ = −κθεθ − κθΨ2
θεθ

−Ψθ

(
θ̇r(t) + νθ(εθ, t)

)
+ ΨθρvθT

−1
vθ

(εvθ ) (46)

ε̇vθ = −J−1
θ Kθκvθ (εvθ + Ψ2

vθ
εvθ )

+Ψvθ {−Zθ(εθ, εvθ , t)
−ZEθ (εθk , εθ, εq, εvq , t)− v̇θ − νvθ (εvθ , t)

}
(47)

ε̇vk = −J−1
k Kkκvk(εvk + Ψ2

vk
εvk)

+Ψvk {−Zθk(εθk , εvθk, t)

−Zk(εθk , εθ, εq, εvq , t)− v̇θk − νvk(εvk , t)
}

(48)

According to the prescribed performance preliminaries, the
PPC/VSA problem is solved if the uniform boundedness of
εj , j = {q, θk, vq, θ, vθ, vk} , is proved. The proof proceeds
in a stepwise manner as follows.

Step 1 (εq , εθk -subsystems): At first we consider the εq ,
εθk subsystems (43), (44) and the positive definite and radially
unbounded Lyapunov function candidate V1 = 1

2 εTq εq +
1
2 εTθkεθk . The time derivative of V1 along the solutions of

(43), (44) yields

V̇1 = −
∑

i∈{q,θk}

κi‖εi‖2 −
∑

i∈{q,θk}

κi‖Ψiεi‖2 +
∑

i∈{q,θk}

εTi ΨiBi

≤ −
∑

i∈{q,θk}

κi‖εi‖2 −
∑

i∈{q,θk}

κi‖Ψiεi‖2

+
∑

i∈{q,θk}

‖εTi Ψi‖‖Bi‖

where

Bq =
(
ρvqT

−1
vq (εvq )− q̇d(t)− νq(εq, t)

)
(49)

Bθk =
(
ρθkT

−1
vk

(εvk)− θ̇kd(t)− νθk(εθk , t)
)

(50)

Completing the squares we finally arrive at

V̇1 ≤ −
∑

i∈{q,θk}

κi‖εi‖2 +
∑

i∈{q,θk}

1

4κi
‖Bi‖2

To continue, notice that in (49), (50) ρvqT
−1
vq (εvq ) ∈ L∞ and

ρθkT
−1
vk

(εvk) ∈ L∞ since ρvq (t), ρθk(t) are bounded functions
of time by definition and T−1

vq (εvq ), T−1
vk

(εvk) are bounded by
construction. Moreover,

νq(εq, t) =
[
ρ̇q1(t)T−1

q1 (εq1) . . . ρ̇qn(t)T−1
qn (εqn)

]T
,

νθk(εθk , t)=
[
ρ̇θk1(t)T−1

θk1(εθk1) . . . ρ̇θkn(t)T−1
θkn

(εθkn)
]T
.

Hence, νq(εq, t), νθk(εθk , t) ∈ L∞ since ρ̇q(t), ρ̇θk(t)
are bounded functions of time by definition and T−1

q (εq),
T−1
θk

(εθk) are bounded by construction. Finally, q̇d(t), θ̇kd(t)
are bounded owing to the smoothness and boundedness of
qd(t) and θkd(t). Therefore, the terms ‖Bi‖2, i ∈ {q, θk} are
also bounded and let ci = supt ‖Bi‖2 > 0, i ∈ {q, θk}. Thus,
V̇1 becomes

V̇1 ≤ −
∑

i∈{q,θk}

κi‖εi‖2 +
∑

i∈{q,θk}

ci
4κi

(51)

From (51) we conclude the uniform ultimate boundedness of
εi i ∈ {q, θk} with respect to the sets

Ei =

{
‖εi‖ ∈ R : ‖εi‖ ≤

√
ci

2κi

}
, i ∈ {q, θk}

and hence their uniform boundedness as well. Consequently
Ψi, i ∈ {q, θk} are bounded, while Ψ−1

i (εi), i ∈ {q, θk}
as defined in (8) are bounded by construction. It is therefore
straightforward to conclude from (43),(44) the boundedness of
ε̇i(t), i ∈ {q, θk} which further implies the boundedness of
vi, i ∈ {q, θk} owing to (12), (14). Furthermore,

v̇i = −κi
[
(ϑṪi + ϑṪ−1

i )εi + (Ψi + Ψ−1
i )ε̇i

]
∈ L∞

,i ∈ {q, θk} since εi, ε̇i,Ψi,Ψ
−1
i , i ∈ {q, θk} were already

proved bounded and ϑṪi, ϑṪ−1
i , i ∈ {q, θk} are bounded since

Ψi,Ψ
−1
i are smooth and bounded.

Step 2 (εvq -subsystem): Consider now (45) and the posi-
tive definite, radially unbounded Lyapunov function candidate
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V2 = 1
2 εTvqεvq . Following identical arguments as in Step 1,

the time derivative of V2 yields

V̇2 ≤ −κvqλMKM (θk)‖Ψvqεvq‖2

−κvqεTvqΨvqM
−1(q)∆K(θk)Ψvqεvq

+‖εTvqΨvq‖‖Bvq‖

where

Bvq = −Zq(εq, εvq , t)− v̇q − νvq (εvq , t)−
−ZEq (εq, εθk , t)

(
qd + ρqT

−1
q (εq)

−ρθT−1
θ (εθ)

)
(52)

and we have used the well known property for the robot’s iner-
tia matrix M(q), that there exist constants λm, λM satisfying
λM > λm > 0 such that

λmI ≤M(q) ≤ λMI (53)

Splitting the first term as follows:

−κvqKM (θk)λM‖Ψvqεvq‖2 =

− 1

γ
κvqKM (θk)λM‖Ψvqεvq‖2

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

with γ > 1 a constant. Utilising (53) we obtain

V̇2 ≤ − 1

γ
κvqKM (θk)λM‖Ψvqεvq‖2

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

+κvqλmλ∆K‖Ψvqεvq‖2 + ‖εTvqΨvq‖‖Bvq‖

where

λ∆K(θk) = max
i
{|Ki(θki)−KM (θk)|}

= KM (θk)−min
i
{Ki(θki)} > 0, (54)

∀θk > 0, with Ki(θki), i = 1, . . . , n the elements of the
K(θk) matrix. Completing the squares we obtain

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2 + ‖εTvqΨvq‖‖Bvq‖

≤ γ

2(γ − 1)κvqKM (θk)λM
‖Bvq‖2

Hence V̇2 becomes

V̇2 ≤ −
1

γ
κvqKM (θk)λM‖Ψvqεvq‖2

−γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

+
γ‖Bvq‖2

2(γ − 1)κvqKM (θk)λM
+ κvqλmλ∆K‖Ψvqεvq‖2.

Claim 1 There exists a γ > 1 such that the following
inequality holds:

λ∆K(θk)

KM (θk)
≤ 1

γ

λM
λm

, ∀θk > 0. (55)

Proof. From (6), (54), notice that ∀θk > 0

λ∆K(θk)

KM (θk)
=

maxi {Ki(θki)} −mini {Ki(θki)}
maxi {Ki(θki)}

= 1− mini {Ki(θki)}
maxi {Ki(θki)}

< 1.

Therefore, since λM
λm

> 1, we conclude that there exists a
positive constant γ > 1, such that (55) holds.

�

Using Claim 1, we straightforwardly conclude that

− 1

γ
κvqKM (θk)λM‖Ψvqεvq‖2+κvqλmλ∆K‖Ψvqεvq‖2≤0.

Therefore, V̇2 finally becomes

V̇2 ≤ −
γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2

+
γ

2(γ − 1)κvqKM (θk)λM
‖Bvq‖2. (56)

To proceed we need to show the boundedness of ‖Bvq‖
defined in (52). In Step 1 we have proved the boundedness
of εq, εθk . Moreover, qd and θkd are bounded by definition.
To continue, ρθT−1

θ (εθ) ∈ L∞ and ρqT
−1
q (εq) ∈ L∞ since

ρθ and ρq are smooth and bounded functions of time by
definition and T−1

θ (εθ), T−1
q (εq) are bounded by construction.

Furthermore v̇q was proven bounded in Step 1 and

νvq (εvq , t) =
[
ρ̇vq1(t)T−1

vq1
(εvq1) . . . ρ̇vqn(t)T−1

vqn(εvqn)
]T

is bounded by construction. Additionally, owing to (4) and
(22), (24), (30), (36), (37) the terms Zq(εq, εvq , t) and
ZEq (εq, εθk , t) are also bounded. Therefore, all terms appear-
ing in (52) are bounded, which directly leads to the bounded-
ness of ‖Bvq‖. If we denote by cvq = supt ‖Bvq‖2 > 0, V̇2

becomes:

V̇2 ≤ −
γ − 1

2γ
κvqKM (θk)λM‖Ψvqεvq‖2 (57)

+
γcvq

2(γ − 1)κvqKM (θk)λM
(58)

From (57) we conclude the uniform ultimate bound-
edness of ‖Ψvqεvq‖ with respect to the set Evq ={
‖Ψvqεvq‖ ∈ < : ‖Ψvqεvq‖ ≤

γ
√
cvq

(γ−1)κvqKM (θk)λM

}
and thus

its uniform boundedness as well. Let avq > 0 be an (unknown)
upper bound. Since ‖Ψvqεvq‖ ≤ avq , we straightforwardly
conclude that

|Ψvqi εvqi| = |Ψvqi||εvqi| ≤ avq , ∀i = 1, . . . , n. (59)

Moreover, by definition 0 < ρvqi(t) < ρvq0i, ∀i = 1, 2, . . . , n
and Tvqi is strictly increasing. Therefore, there exists a pos-
itive constant τvqi such that

∂Tvqi
∂(evqi/ρvqi)

≥ τvqi > 0, i =
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1, 2, . . . , n. Hence, Ψvqi ≥
τvqi
ρvq0i

> 0, i = 1, . . . , n. Thus
from (59) we obtain the uniform boundedness of εvqi, i =
1, 2, . . . , n as follows

|εvqi| ≤
avq ρvq0i

τvqi
, i = 1, . . . , n

. Finally, form (45) we conclude that ε̇vq ∈ L∞, which
together with (11) implies θr(t), θ̇r(t) ∈ L∞.

Step 3 (εθ-subsystem): In Step 3 we consider (46) and the
positive definite and radially unbounded Lyapunov function
candidate V3 = 1

2 εTθ εθ. Following the same line of proof
as in Step 1 we conclude the uniform ultimate boundedness
of ‖εθ‖ (and thus its uniform boundedness) with respect to
the set Eθ =

{
‖εθ‖ ∈ < : ‖εθ(t)‖ ≤

√
cθ

2κθ

}
, where cθ =

supt ‖ρvθT−1
vθ

(εvθ ) − θ̇r − νθ(εθ, t)‖2 > 0 of the proven
bounded term ‖ρvθT−1

vθ
(εvθ )− θ̇r−νθ(εθ, t)‖2. As a result we

have proved as well the boundedness of Ψθ, while Ψ−1
θ (εq)

defined in (8), is bounded by construction. Finally, (46) yields
the boundedness of ε̇θ(t), which together with (10) leads to
the boundedness of vθ(t), v̇θ(t).

Step 4 (εvθ , εvk -subsystems): In the final step, the
two transformed motor velocity tracking error dynamics
(47), (48) are considered, together with the positive definite
and radially unbounded Luapunov function candidate V4 =
1
2

∑
i∈{θ,k}

εTviεvi . Following the arguments of Step 1, the time

derivative of V4 along (48), (47) yields

V̇4 ≤ −
∑

i∈{θ,k}

κviλJiλKi‖εvi‖2 −
∑

i∈{θ,k}

κviλJiλKi‖Ψviεvi‖2

+
∑

i∈{θ,k}

‖εTviΨvi‖‖Bvi‖

where λJi = λmin(J−1
i ), λKi = λmin(Ki), i ∈ {θ, k} and

Bvi = −Zi(εθ, εvθ , t)−ZEi(εθk , εθ, εq, εvq , t)
−v̇i − νvi(εvθ , t), i ∈ {θ, k} .(60)

Completing the squares we obtain

V̇4 ≤ −
∑

i∈{θ,k}

κviλJiλKi‖εvi‖2 +
∑

i∈{θ,k}

‖Bvi‖2

4κviλJiλKi
.

To proceed we need to show the boundedness of ‖Bvi‖,
i ∈ {θ, k} defined in (60). In Steps 1, 2, 3 we have proved
the boundedness of εq, εθk , εθ, εvq . Moreover νvθ (εvθ , t) and
νvk(εvk , t) are bounded by construction. Additionally ow-
ing to (4), (28), (32), (38), (39), (40), (41) the terms
Zθ(εθ, εvθ , t), ZEθ (εθk , εθ, εq, εvq , t), Zθk(εθk , εvk , t) and
Zk(εθk , εθ, εq, εvq , t) are proven bounded. Therefore, all terms
appearing in (60) are bounded, which directly leads to the
boundedness of ‖Bvi‖, i ∈ {θ, k} . If we denote by cvi =
supt ‖Bvi‖2 > 0 , i ∈ {θ, k}, V̇4 becomes:

V̇4 ≤ −
∑

i∈{θ,k}

κviλJiλKi‖εvi‖2 +
∑

i∈{θ,k}

cvi
4κviλJiλKi

. (61)

From (61) we conclude the uniform ultimate bounded-
ness of εvi , i ∈ {θ, k} with respect to the sets Evi =

{
‖εvi‖ ∈ R : ‖εvi(t)‖ ≤

√
cvi

2κviλJiλKi

}
, i ∈ {θ, k} and con-

sequently their uniform boundedness. Finally, owing to (47),
(48), ε̇vi(t) , i ∈ {θ, k} are also bounded.

Summarizing, the controller (9)-(14) proves the uniform
boundedness of the transformed errors εq, εθk , εvq , εθ, εvθ ,
εvk , thus solving the PPC/VSA problem.
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